185 resultados para zeros of Gram polynomials
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We discuss an old theorem of Obrechkoff and some of its applications. Some curious historical facts around this theorem are presented. We make an attempt to look at some known results on connection coefficients, zeros and Wronskians of orthogonal polynomials from the perspective of Obrechkoff's theorem. Necessary conditions for the positivity of the connection coefficients of two families of orthogonal polynomials are provided. Inequalities between the kth zero of an orthogonal polynomial p(n)(x) and the largest (smallest) zero of another orthogonal polynomial q(n)(x) are given in terms of the signs of the connection coefficients of the families {p(n)(x)} and {q(n)(x)}, An inequality between the largest zeros of the Jacobi polynomials P-n((a,b)) (x) and P-n((alpha,beta)) (x) is also established. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Denote by x(nk)(alpha, beta), k = 1...., n, the zeros of the Jacobi polynornial P-n((alpha,beta)) (x). It is well known that x(nk)(alpha, beta) are increasing functions of beta and decreasing functions of alpha. In this paper we investigate the question of how fast the functions 1 - x(nk)(alpha, beta) decrease as beta increases. We prove that the products t(nk)(alpha, beta) := f(n)(alpha, beta) (1 - x(nk)(alpha, beta), where f(n)(alpha, beta) = 2n(2) + 2n(alpha + beta + 1) + (alpha + 1)(beta + 1) are already increasing functions of beta and that, for any fixed alpha > - 1, f(n)(alpha, beta) is the asymptotically extremal, with respect to n, function of beta that forces the products t(nk)(alpha, beta) to increase. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Denote by x(n,k)(alpha, beta) and x(n,k) (lambda) = x(n,k) (lambda - 1/2, lambda - 1/2) the zeros, in decreasing order, of the Jacobi polynomial P-n((alpha, beta))(x) and of the ultraspherical (Gegenbauer) polynomial C-n(lambda)(x), respectively. The monotonicity of x(n,k)(alpha, beta) as functions of a and beta, alpha, beta > - 1, is investigated. Necessary conditions such that the zeros of P-n((a, b)) (x) are smaller (greater) than the zeros of P-n((alpha, beta))(x) are provided. A. Markov proved that x(n,k) (a, b) < x(n,k)(α, β) (x(n,k)(a, b) > x(n,k)(alpha, beta)) for every n is an element of N and each k, 1 less than or equal to k less than or equal to n if a > alpha and b < β (a < alpha and b > beta). We prove the converse statement of Markov's theorem. The question of how large the function could be such that the products f(n)(lambda) x(n,k)(lambda), k = 1,..., [n/2] are increasing functions of lambda, for lambda > - 1/2, is also discussed. Elbert and Siafarikas proved that f(n)(lambda) = (lambda + (2n(2) + 1)/ (4n + 2))(1/2) obeys this property. We establish the sharpness of their result. (C) 2002 Elsevier B.V. (USA).
Resumo:
It is well known and easy to see that the zeros of both the associated polynomial and the derivative of an orthogonal polynomial p(n)(x) interlace with the zeros of p(n)(x) itself. The natural question of how these zeros interlace is under discussion. We give a sufficient condition for the mutual location of kth, 1 less than or equal to k less than or equal to n - 1, zeros of the associated polynomial and the derivative of an orthogonal polynomial in terms of inequalities for the corresponding Cotes numbers. Applications to the zeros of the associated polynomials and the derivatives of the classical orthogonal polynomials are provided. Various inequalities for zeros of higher order associated polynomials and higher order derivatives of orthogonal polynomials are proved. The results involve both classical and discrete orthogonal polynomials, where, in the discrete case, the differential operator is substituted by the difference operator. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Denote by X(nk)(alpha), k = 1, ..., n, the zeros of the Laguerre polynomial L(n)((alpha))(X). We establish monotonicity with respect to the parameter at of certain functions involving X(nk)(alpha). As a consequence we obtain sharp upper bounds for the largest zero of L(n)((alpha))(X). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Relation between two sequences of orthogonal polynomials, where the associated measures are related to each other by a first degree polynomial multiplication (or division), is well known. We use this relation to study the monotonicity properties of the zeros of generalized orthogonal polynomials. As examples, the Jacobi, Laguerre and Charlier polynomials are considered. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigate the mutual location of the zeros of two families of orthogonal polynomials. One of the families is orthogonal with respect to the measure dμ (x), supported on the interval (a, b) and the other with respect to the measure |x -c|τ|x -d|γdμ (x), where c and d are outside (a, b) We prove that the zeros of these polynomials, if they are of equal or consecutive degrees, interlace when either 0 < τ, γ ≤ 1 or γ = 0 and 0 < τ ≤ 2. This result is inspired by an open question of Richard Askey and it generalizes recent results on some families of orthogonal polynomials. Moreover, we obtain further statements on interlacing of zeros of specific orthogonal polynomials, such as the Askey-Wilson ones. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)