Monotonicity and asymptotics of zeros of Sobolev type orthogonal polynomials: A general case
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/11/2012
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We investigate the location, monotonicity, and asymptotics of the zeros of the polynomials orthogonal with respect to the Sobolev type inner product< p, q > (lambda,c.j) = integral(b)(a) p(x)q(x)mu(x) + lambda p((j))(c)q((j))(c),where mu is a positive Borel measure, lambda >= 0, j is an element of Z(+), and c is not an element of (a, b). We prove that these zeros are monotonic function of the parameter A and establish their asymptotics when either lambda converges to zero or to infinity. The precise location of the extreme zeros is also analyzed. (c) 2012 IMACS. Published by Elsevier B.V. All rights reserved. |
Formato |
1663-1671 |
Identificador |
http://dx.doi.org/10.1016/j.apnum.2012.05.006 Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 62, n. 11, p. 1663-1671, 2012. 0168-9274 http://hdl.handle.net/11449/1113 10.1016/j.apnum.2012.05.006 WOS:000309027700005 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Applied Numerical Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Orthogonal polynomials #Sobolev type inner product #Zeros #Monotonicity #Asymptotic behavior |
Tipo |
info:eu-repo/semantics/article |