Distances between critical points and midpoints of zeros of hyperbolic polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/03/2010
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Processo FAPESP: 03/01874-2 Let p(x) be a polynomial of degree n with only real zeros x(1) <= x(2) <= ... <= x(n). Consider their midpoints z(k) = (x(k) + x(k+1))/2 and the zeros xi(1) <= xi(2) <= ... <= xi(n-1) of p'(z). Motivated by a question posed by D. Farmer and R. Rhoades, we compare the smallest and largest distances between consecutive xi(k) to the ones between consecutive z(k). The corresponding problem for zeros and critical points of entire functions of order one from the Laguerre-Polya class is also discussed. (C) 2007 Published by Elsevier Masson SAS. |
Formato |
196-206 |
Identificador |
http://dx.doi.org/10.1016/j.bulsci.2007.11.006 Bulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 134, n. 2, p. 196-206, 2010. 0007-4497 http://hdl.handle.net/11449/21779 10.1016/j.bulsci.2007.11.006 WOS:000275580900005 |
Idioma(s) |
eng |
Publicador |
Gauthier-villars/editions Elsevier |
Relação |
Bulletin des Sciences Mathematiques |
Direitos |
closedAccess |
Palavras-Chave | #Hyperbolic polynomial #Strictly hyperbolic polynomial #Zero #Midpoint #Critical point #Entire function #Laguerre-Polya class |
Tipo |
info:eu-repo/semantics/article |