Distances between critical points and midpoints of zeros of hyperbolic polynomials


Autoria(s): Dimitrov, Dimitar Kolev; Kostov, Vladimir P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/03/2010

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 03/01874-2

Let p(x) be a polynomial of degree n with only real zeros x(1) <= x(2) <= ... <= x(n). Consider their midpoints z(k) = (x(k) + x(k+1))/2 and the zeros xi(1) <= xi(2) <= ... <= xi(n-1) of p'(z). Motivated by a question posed by D. Farmer and R. Rhoades, we compare the smallest and largest distances between consecutive xi(k) to the ones between consecutive z(k). The corresponding problem for zeros and critical points of entire functions of order one from the Laguerre-Polya class is also discussed. (C) 2007 Published by Elsevier Masson SAS.

Formato

196-206

Identificador

http://dx.doi.org/10.1016/j.bulsci.2007.11.006

Bulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 134, n. 2, p. 196-206, 2010.

0007-4497

http://hdl.handle.net/11449/21779

10.1016/j.bulsci.2007.11.006

WOS:000275580900005

Idioma(s)

eng

Publicador

Gauthier-villars/editions Elsevier

Relação

Bulletin des Sciences Mathematiques

Direitos

closedAccess

Palavras-Chave #Hyperbolic polynomial #Strictly hyperbolic polynomial #Zero #Midpoint #Critical point #Entire function #Laguerre-Polya class
Tipo

info:eu-repo/semantics/article