Inequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
18/03/2015
18/03/2015
01/11/2014
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Let x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach. |
Formato |
549-563 |
Identificador |
http://link.springer.com/article/10.1007%2Fs11075-013-9807-7 Numerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014. 1017-1398 http://hdl.handle.net/11449/117661 10.1007/s11075-013-9807-7 WOS:000344598600005 |
Idioma(s) |
eng |
Publicador |
Springer |
Relação |
Numerical Algorithms |
Direitos |
closedAccess |
Palavras-Chave | #Gautschi's conjectures #Jacobi polynomials #Zeros #Inequalities |
Tipo |
info:eu-repo/semantics/article |