Convolutions and zeros of orthogonal polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/07/2011
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 09/13832-9 In an attempt to answer a long standing open question of Al-Salam we generate various beautiful formulae for convolutions of orthogonal polynomials similar toU(n)(x) = Sigma(n)(k=0) P(k)(x)P(n-k)(x).where U(n)(x) are the Chebyshev polynomials of the second kind and P(k)(x) are the Legendre polynomials. The results are derived both via the generating functions approach and a new convolution formulae for hypergeometric functions. We apply some addition formulae similar to the well-known expansionH(n)(x + Y) = 2(-n/2) Sigma(n)(k=0) (n k) H(k)(root 2x) H(n-k)(root 2y)for the Hermite polynomials, due to Appell and Kampe de Feriet, to obtain new interesting inequalities about the zeros of the corresponding orthogonal polynomials. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved. |
Formato |
868-878 |
Identificador |
http://dx.doi.org/10.1016/j.apnum.2011.02.004 Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 61, n. 7, p. 868-878, 2011. 0168-9274 http://hdl.handle.net/11449/21778 10.1016/j.apnum.2011.02.004 WOS:000290281700005 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Applied Numerical Mathematics |
Direitos |
closedAccess |
Palavras-Chave | #Orthogonal polynomials #Convolution #Generating function #Zeros |
Tipo |
info:eu-repo/semantics/article |