Monotonicity of zeros of Jacobi polynomials


Autoria(s): Dimitrov, Dimitar K.; Rafaeli, Fernando R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/11/2007

Resumo

Denote by x(nk)(alpha, beta), k = 1...., n, the zeros of the Jacobi polynornial P-n((alpha,beta)) (x). It is well known that x(nk)(alpha, beta) are increasing functions of beta and decreasing functions of alpha. In this paper we investigate the question of how fast the functions 1 - x(nk)(alpha, beta) decrease as beta increases. We prove that the products t(nk)(alpha, beta) := f(n)(alpha, beta) (1 - x(nk)(alpha, beta), where f(n)(alpha, beta) = 2n(2) + 2n(alpha + beta + 1) + (alpha + 1)(beta + 1) are already increasing functions of beta and that, for any fixed alpha > - 1, f(n)(alpha, beta) is the asymptotically extremal, with respect to n, function of beta that forces the products t(nk)(alpha, beta) to increase. (c) 2007 Elsevier B.V. All rights reserved.

Formato

15-29

Identificador

http://dx.doi.org/10.1016/j.jat.2007.04.004

Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 149, n. 1, p. 15-29, 2007.

0021-9045

http://hdl.handle.net/11449/21723

10.1016/j.jat.2007.04.004

WOS:000251646600002

WOS000251646600002.pdf

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal of Approximation Theory

Direitos

openAccess

Palavras-Chave #zeros #Jacobi polynomials #monotonicity
Tipo

info:eu-repo/semantics/article