Monotonicity of zeros of Jacobi polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/11/2007
|
Resumo |
Denote by x(nk)(alpha, beta), k = 1...., n, the zeros of the Jacobi polynornial P-n((alpha,beta)) (x). It is well known that x(nk)(alpha, beta) are increasing functions of beta and decreasing functions of alpha. In this paper we investigate the question of how fast the functions 1 - x(nk)(alpha, beta) decrease as beta increases. We prove that the products t(nk)(alpha, beta) := f(n)(alpha, beta) (1 - x(nk)(alpha, beta), where f(n)(alpha, beta) = 2n(2) + 2n(alpha + beta + 1) + (alpha + 1)(beta + 1) are already increasing functions of beta and that, for any fixed alpha > - 1, f(n)(alpha, beta) is the asymptotically extremal, with respect to n, function of beta that forces the products t(nk)(alpha, beta) to increase. (c) 2007 Elsevier B.V. All rights reserved. |
Formato |
15-29 |
Identificador |
http://dx.doi.org/10.1016/j.jat.2007.04.004 Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 149, n. 1, p. 15-29, 2007. 0021-9045 http://hdl.handle.net/11449/21723 10.1016/j.jat.2007.04.004 WOS:000251646600002 WOS000251646600002.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Approximation Theory |
Direitos |
openAccess |
Palavras-Chave | #zeros #Jacobi polynomials #monotonicity |
Tipo |
info:eu-repo/semantics/article |