81 resultados para método de correção por equação matemática
Resumo:
Resumen tomado del autor
Resumo:
Se defiende la utilización de la prensa como recurso didáctico en las clases de matemáticas. Se exponen algunas consideraciones prácticas que tratan de animar a los profesores de matemáticas a que utilicen como recurso en sus clases los medios de comunicación y, en concreto la prensa como método de enseñanza-aprendizaje.
Resumo:
Resumen tomado de la publicación. IV número monográfico con el título: VII Seminario de Investigación y pensamiento numérico y algebraico (PNA).
Resumo:
Resumen tomado de la publicación. Monográfico con el título: I Jornadas de Educación Infantil 'la emoción de aprender: una visión de la Educación Infantil desde la metodología de proyectos'
Resumo:
Serie de cuatro artículos sobre la enseñanza de la matemática en los números 21, p. 11-14; n. 22, p. 83-86; n. 23, p. 172-181 y n. 30, p. 23-26 de la revista
Resumo:
Continúa en el n. 24, p. 4-9
Resumo:
Serie de cuatro artículos sobre la enseñanza de la matemática en los números 21, p. 11-14; n. 22, p. 83-86; n. 23, p. 172-181 y n. 30, p. 23-26 de la revista
Resumo:
Es continuación del artículo Ideas generales acerca de la didáctica de la matemática elemental, del n. 23, p. 157-162
Resumo:
Los problemas que plantea la didáctica de las matemáticas en la educación secundaria son planteados desde distintas perspectivas. En primer lugar desde el punto de vista de su planificación o programación. Se señalan ventajas e inconvenientes de una programación con un método cíclico. Después se reflexiona en torno a los conocimientos matemáticos más simples e intuitivos, y pro tanto los más aptos para los primeros ciclos medios como el cálculo, la numeración o una geometría simple. En este contexto también se hace referencia al método intuitivo. Se prosigue con la iniciación al cálculo literal y al álgebra. En la transición a los ciclos superiores del bachillerato, posibilita el estudio de la Trigonometría y de las ecuaciones y problemas de segundo grado. Por último, el bachiller está capacitado para pasar del conocimiento matemático basado en lo intuitivo, a un conocimiento basado en lo racional, que le permite, por ejemplo, la representación interna del espacio euclídeo.
Resumo:
Reflexión sobre la didáctica de las matemáticas en la enseñanza secundaria. Se ofrecen una serie de conclusiones finales, sobre la influencia de las matemáticas en el desarrollo de ciertas facultades de pensamiento. Gracias a las matemáticas, tras los cursos del bachillerato, es decir en el ciclo metodológico final de éstas, de se habrá logrado que los alumnos sean capaces de desarrollar pensamientos deductivos o una metodología deductiva en el acercamiento al conocimiento. Por tanto se produce una transición del conocimiento intuitivo al deductivo, para lo cual es fundamental que sea el propio alumno el que descubra este tipo de método de resolución de problemas. En definitiva, el niño tiene más poder de abstracción que el que se le atribuye. La dificultad principal es traer a un plano consciente dichas abstracciones y sistematizarlas. Esta debe ser la finalidad epistemológica fundamental del ciclo de iniciación racional. Por ello es en los ciclos superiores cuando se puede iniciar el estudio del número real, la geometría analítica, el cálculo y la estadística. Se profundiza en torno al estudio de estas materias en el bachillerato, los modos de incentivar el interés de los alumnos y de lograr un conocimiento que sirva de base para el estudio futuro y para el desarrollo de habilidades intelectuales.
Resumo:
Se exponen las causas extrínsecas e intrínsecas que influyen en la crisis que atraviesa la enseñanza de las Matemáticas en España. Además de tratar el hecho del divorcio entre Matemática y Pensamiento, y que tal separación debe superarse para tratar de responder a la pregunta final.
Resumo:
El bachillerato dotado de una entidad propia debe acentuar su carácter de formación de la personalidad del educando. Y , a la vez, debe ser orientador del futuro profesional del alumno. Así, la finalidad del mismo es hoy la formación de los jóvenes para que puedan elegir libremente su propio destino, con pleno conocimiento de sus capacidades e intereses. Pero el cambio tan radical en la enseñanza ha dado origen a multitud de actitudes en todos los sectores y hasta de la propia administración que no ha sabido seguir una línea directriz de continuidad. Se concibe una enseñanza media integrada en la educación general. En esta tarea ¿Qué papel tienen las matemáticas? Dos notas características son los elementos de Euclides: su contrucción axiomática y el método deductivo. Unos axiomas sin ningún significado concreto originan una estructura, a partir de ellos, por un método rigurosamente deductivo, se demuestra una serie de proposiciones o teoremas, cuyo conjunto forma una teoría matemática. Pero antes de llegar al razonamiento deductivo hay que deleitarse en otro tipo de actividades. También hay que partir de un método riguroso, sencillo y verdadero. Saber es dominar en matemáticas. No se puede pasar de un concepto al siguiente sin haber dominado plenamente el anterior.
Resumo:
Los textos de matemáticas recreativas (o la inclusión de estas en los cursos ordinarios) son tónicos excelentes que entendemos ayudan al alumno a seguir adelante. Estas matemáticas son una colección de problemas generalmente enunciados en forma de acertijos casi todos los cuales se resuelven por medio del análisis indeterminado. Muchos alumnos tienen dificultades en su aprendizaje matemático. Tales dificultades se verán multiplicadas si los profesores se empeñan en los niveles obligatorios de enseñanza de las matemáticas en explicarlas usando el método axiomático (aplicación de rigor pura y dura) Pero dicho método en 1õ y 2õ de BUP hay que usarlo con sumo cuidado.
Resumo:
La enseñanza de las matemáticas tiene mucho que ganar si se hace más humana; tanto si es tradicional como no se reduce a la misma cuestión; el proponer una matemática descarnada, encerrada en sí misma. Sus programas hay que darlos completos, ignorando siempre a los niños. Lo que hace que el profesor se vea obligado a condicionarlos lo más deprisa posible sin tener en cuenta su afectividad y su desarrollo personal. El cambio no vendrá por nuestras reformas sólo puede venir de los profesores teniendo un buen contacto adaptado al alumno. La comprensión de asegurar el aprendizaje, pero hay que comprenderles de verdad. Aprendemos de nuestros errores, ya que nos obliga a reflexionar. Mantened todos los lazos con la vida porque esta es la mejor motivación de la enseñanza de las matemáticas y la fuente inagotable de temas pedagógicos. Los variados y atractivos para los jóvenes alumnos que descubren al mismo tiempo que los hechos se matematizan.
Resumo:
Se presentan algunas definiciones como materia de trabajo en clase tomadas de los textos de Geometría de don Pedro Puig Adam. Se estudia el interés que manifiestan los alumnos cuando se les plantean ejercicios de reconstrucción de deducciones, igualdades incompletas, etc. Y en este caso, se aplica a una colección de definiciones donde se omiten ciertos vocablos para que se pueda establecer una conexión lógica para completarlas.