670 resultados para Conocimiento matemático
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen de la revista
Resumo:
Resumen de la revista
Resumo:
Resumen tomado de la publicación
Resumo:
No publicado
Resumo:
1.- Medir los efectos del Programa Radiofónico Matemática Interactiva, por los logros del aprendizaje matemático en los alumnos de segundo grado de Educación Básica, que estudian en Escuelas Públicas dentro del área metropolitana de Caracas. 2.- Elaborar un instrumento cuestionario, que sirva para medir los conocimientos matemáticos de los alumnos de segundo grado, previa operacionalización de las variables. 3.- Analizar curricularmente el Programa Matemática Interactiva del CENAMEC. 4.- Interpretar desde el punto de vista epistemológico la Filosofía del Programa Matemática Interactiva. 5.- Elaborar un instrumento- cuestionario que sirva para medir los conocimientos matemáticos de los alumnos de segundo grado, previa operacionalización de las variables. 6.- Evaluar el aprendizaje matemático de un grupo de alumnos de segundo grado pertenecientes a la Escuela Básica 'Dr. Nicolás José Mendible' participante del programa Matemática Interactiva a través de una serie de pruebas al inicio y final del curso. 7.- Comprobar el nivel de razonamiento matemático de los alumnos de escuelas públicas de segundo grado de educación básica que están incorporados al programa frente a aquellos que no lo están. Muestra: 100 sujetos con edades de 6 a 11 años, que cursan segundo grado de la primera etapa de la Educación Básica (primero a tercer curso) pertenecientes a dos escuelas públicas del distrito número 4 de Caracas. Las escuelas básicas del Distrito escolar número 4, pertenecen al barrio el Cementerio; del área metropolitana de Caracas, que consta de 75 escuelas en 28 de ellas se lleva a cabo el Programa Matemática Interactiva y en 47 no se aplica el programa. Aplicación pretest, noviembre 1998. verificación de la situación Postest, junio 1999. Evaluación final para establecer el impacto de la variable independiente (empleo por radio). Cuestionario de 20 items de opción múltiple que comprende ejercicios de cálculo y problemas de solución rápida. T de Student y análisis de varianza. El programa Matemática Interactiva para la Educación Básica está dirigido a lograr un mayor rendimiento del alumno, incrementar la efectividad de la labor del docente y fomentar una actitud positiva de los alumnos hacia la materia. Es un programa diseñado para elevar la calidad de la enseñanza de matemáticas en la Primera Etapa de la Educación Básica, combina la audición activa de encuentros radiofónicos con la reutilización de actividades en el aula, para desarrollar los contenidos propios de la asignatura. La utilización del programa Matemática Interactiva en el aula produce efectos positivos en el aprendizaje matemático de los alumnos y en la transferencia de resolución de problemas en la Educación Básica; efectos que no son consecuencia del empleo del medio radiofónico en sí mismo, sino que su valor educativo depende del contexto en el que se introduce y de la adecuación a las necesidades e intereses del grupo, así como a las características del medio utilizado y las que el docente haga de él, dentro de su actividad didáctica en el aula. Los resultados en el pretest en ambos grupos indican que se encontraban en condiciones similares respecto al conocimiento matemático. La investigación permite obtener las siguientes conclusiones: 1.- El diseño metodológico empleado permite ver cómo influye el Programa Matemática Interactiva en el proceso de enseñanza aprendizaje de los alumnos. 2.- El instrumento diseñado para la investigación ha demostrado ser pertinente para los contenidos del programa. 3.- La aplicación del test y postest a los grupos control y experimental ha aportado resultados significativos que refuta las hipótesis planteadas. 4.- Aunque la muestra no es muy numerosa, sí es representativa de la población estudiada. 5.- El análisis de las variables: sexo, edad y nivel socioeconómico ha mostrado no ser influyentes en el aprendizaje de los alumnos. 6.- Los resultados obtenidos han demostrado resultados significativos del grupo control, mostrando que el Programa Matemática Interactiva influye en el aprendizaje estudiantil de las matemáticas.
Resumo:
El artículo forma parte de un dossier titulado: La cultura matemática
Resumo:
El progreso en las habilidades lingüísticas repercute positivamente en el conocimiento matemático. Además del seguimiento sobre los contenidos propios del área se hace cada vez mas necesario llevar también un seguimiento sobre los progresos y las dificultades en el ámbito lingüístico. Se ofrecen distintas experiencias donde se verbaliza, escribe y se discute colectivamente la forma de organizar las ideas en el área de las matemáticas y las estrategias utilizadas para resolver problemas matemáticos. El seguimiento del aprendizaje se puede hacer mediante el cuaderno del alumno, en el cual el alumnado va plasmando por escrito, con sus propias palabras, todo aquello que va elaborando en diferentes situaciones, y mediante el cuaderno del profesor, donde se anotan las intervenciones orales del alumnado.
Resumo:
Estudiar de qué forma inciden las Matemáticas en la vida de las personas adultas; analizar la educación matemática actual en la enseñanza de personas adultas; aportar propuestas didácticas sobre qué Matemáticas aprender/enseñar y cómo hacerlo en este nivel de enseñanza. Alumnos de la Escuela Popular de Oporto. Se lleva a cabo la observación en la escuela y en otros espacios distintos como excursiones, salidas a museos, etc. Se pretende ser observador directo de situaciones donde utilizan Matemáticas para comprobar las estrategias que utilizan. Las entrevistas contienen preguntas también para intentar descifrar desde fuera las estrategias seguidas. Los temas sobre los que versan son economía doméstica, hábitos de compra, etc.. Observación, entrevistas y análisis bibliográfico. Recursos y métodos cualitativos. El conocimiento matemático en la enseñanza de personas adultas es una construcción social, un conocimiento útil y cercano a la calle que forma parte del lenguaje cotidiano; las Matemáticas deben formar parte importante en la enseñanza actual de personas adultas; se pretende conseguir unos contenidos útiles, cercanos a la realidad cotidiana y con la vista puesta en las necesidades personales y sociales de las personas adultas.
Resumo:
Los tres pilares que confluyen en este trabajo son la Didáctica de las Matemáticas, el aprendizaje colaborativo y las tecnologías de la información y la comunicación. El primero como eje central y de referencia, el segundo como apuesta didáctica y el tercero como soporte y herramienta de puesta en práctica. La introducción de las tecnologías de la información y la comunicación colaborativas en el ámbito de la didáctica de las matemáticas comporta un cambio de paradigma en su conceptualización y modificaciones en su desarrollo didáctico. En esta experiencia se trabajan diferentes aspectos relacionados, como: el cambio de paradigma en la enseñanza y aprendizaje matemáticos que la tecnología ha ocasionado, las teorías psicopedagógicas educativas que deben fundamentar este tipo de enseñanza, la conceptualización de entornos virtuales de aprendizaje desde un punto de vista matemático, la mejora en la construcción del conocimiento matemático a través de medios tecnológicos, las dificultades y/o facilidades que aporta este tipo de desarrollos o las dudas se pueden formular alrededor de la calidad de la enseñanza colaborativa de las matemáticas con soporte TIC.
Resumo:
Se propone una serie de problemas de Matemáticas como actividad fundamental para el aprendizaje de esta área. Se trata de una alternativa a la enseñanza de las Matemáticas con contenidos y procedimientos diferentes a los tradicionales, como es el hecho de partir del conocimiento matemático desde la experiencia y la inducción. Se pretende que estas actividades no se consideren como un bloque aislado, sino que formen parte de cada uno de los bloques de contenido de la materia. Los principales objetivos se refieren al desarrollo del razonamiento lógico y a la resolución de problemas de la vida real. En cada problema de los propuestos se indica el grado de dificultad de 0 a 3 para cada uno de los niveles de la ESO.
Resumo:
Aportación a un proyecto futuro sobre el que se han hecho muchos trabajos parciales, pero nada global: la Historia de la Matemática española. Puede ser importante para la propia formación de futuros matemáticos españoles y para comprender mejor la propia historia de España. La Matemática española. Investigación teórica de tipo histórico que intenta recopilar y sintetizar material bibliográfico para ofrecer una comprensión global y crítica de la Matemática. Pasos dados: la Matemática como expresión cultural; Los corsés académicos; Los llamamientos de los maestros; De Isidoro de Sevilla a Rey Pastor. Primer período: la Edad de Oro de la Matemática española. Segundo período: el siglo XVIII. Tercer período: el siglo XX. Cambios en la ascendencia social de los matemáticos. La modernización. Historias generales de las Ciencias, libros, discursos y artículos sobre la Ciencia y la Matemática española. Análisis descriptivo. Análisis teórico. El ascenso del estudio y conocimiento matemático en nuestro país ha seguido un proceso tortuoso y difícil, recluido en las bibliotecas de los monasterios lo que ha hecho que ya nadie se acerque a ellas. La ignorancia matemática actual no deja de ser una incomprensión de la realidad de nuestra época. El pragmatismo barato ha sido una de las enfermedades incurables de la Matemática española. El contenido profesional que debiera tener la calificación de matemático es sustituido por el concepto elitista de minoría automarginada. En la formación de los nuevos matemáticos se echa en falta las dos ramas, Geometría y Aritmética, que están claramente definidas en él.
Resumo:
Resumen basasdo en el de la publicación
Resumo:
Se analiza el papel de los símbolos como instrumentos en el proceso cognitivo de aprendizaje de conceptos matemáticos. Se expone una visión de la didáctica de las matemáticas como una ciencia antropológica frente a la propia epistemología del puro conocimiento matemático, en la que se se hace incapié en los procesos cognitivos de los elementos involucrados en lugar de estudiar la materia dada. Para ello se clasifican las herramientas de enseñanza en ostensivas y no-ostensivas, y se explican las características de cada una de ellas de cara a su comprensión.
Resumo:
Se analizan las cuestiones relativas a la comprensión y representación del conocimiento matemático. Para ello en primer lugar se analiza la historia de los matemáticos y filósofos y sus concepciones de la comprensión y la representación del conocimiento. A continuación se analiza el concepto de representación del concepto matemático en los trabajos de investigación presentados en los años 80 y 90. También se analiza el fenómeno de la multiplicidad de representaciones para un mismo concepto representado, de manera que no siempre coinciden los símbolos usados en distintas culturas. Por último, se dejan abiertas para el debate cuestiones relativas a la importancia de la dicotomía objeto-representación en la investigación de la didáctica de las matemáticas.