397 resultados para Aprenentatge de la matemàtica
Dificultades y obstáculos para el cambio en el aula : una perspectiva desde la educación matemática.
Resumo:
Resumen tomado de la revista.- Este número de la revista está dedicado a las Dificultades y Obstáculos para el cambio en el aula (I)
Resumo:
El artículo forma parte de un dossier titulado: La cultura matemática
Resumo:
Resumen en euskera y castellano. Resumen tomado de la publicación
Resumo:
Resumen tomado de la publicación
Resumo:
Se presentan las actas del I Simposio de la Sociedad Española de Investigación en Educación Educativa. Se incluyen las sesiones comunes que consisten en seminarios, presentación de proyectos de investigación, presentación de paneles, y una mesa redonda. En los seminarios se mostraron diferentes perspectivas de aproximación a un tema común de investigación y la presentación de los proyectos de investigación va seguida de la reacción de un investigador ajeno a ambos proyectos.
Resumo:
Incluye un esquema sobre el modelo de instrucción
Resumo:
Estudio acerca del desarrollo de la ciencia matemática a lo largo de la historia. Se destaca que el conocimiento de las matemáticas permite a los más jóvenes ser más libres. Posteriormente se destacan tres aspectos muy característicos en esta maduración de la ciencia matemática: una preocupación creciente por el rigor, la intervención sistemática de lo axiomático y una abstracción cada vez mayor. En base a estos tres aspectos se analizan las figuras más significativas de las matemáticas y sus principales aportes. La matemática abstracta sería el máximo punto en ese desarrollo, que se inicia en 1920, gracias a figuras como Artin, Noether o Van der Waerden. Se destaca que el punto de partida de la Matemática moderna es lo teoría de conjuntos, necesaria para definir estructuras susceptibles de aplicarse a cualquier especie de objetos. La matemática moderna, se presenta así como un saber muy lejano a la matemática clásica, por su lenguaje, por su simbolismo, por sus aires de abstracción, por los problemas de que se ocupa etc. Para finalizar se subraya la idea de que la evolución, en este caso de la ciencia matemática, no es un hecho aislado, sino una tendencia universal hacia una mayor madurez y dominio del mundo material.
Resumo:
Dentro del marco de las charlas sobre Didáctica de la matemática en Bachillerato Elemental organizado por el Seminario de Didáctica de Matemáticas de la Universidad de Granada, dirigido a profesores de Enseñanza Media, se recoge la charla ofrecida por el Catedrático de Matemáticas del Instituo 'P. Suárez' de Granada, Sr. Marcos, sobre el material didáctico en la Geometría. Explica la importancia de enseñar al alumno a razonar a pensar y a descubrir por sí mismo y no simplemente a memorizar. De este modo, pidiendo a los alumnos que construyan una regla de un solo borde, conseguirán finalmente poder llegar a sumar y restar ángulos y segmentos utilizando un transportador. Solicitando a los alumnos la construcción de triángulos iguales, descubrirán las características y casos de igualdad de los triángulos. Otro instrumento de valor pedagógico es el cartabón, al que uniéndole un segundo, se convierte en un triángulo equilátero. Y, por último, la escuadra, servirá para explicar las características del triángulo rectángulo.
Resumo:
Los importantes cambios conceptuales habidos en la matemática y la consiguiente renovación respecto de sus contenidos y pedagogía, han sentado los fundamentos de una educación de la matemática verdaderamente lógica. Estas nuevas perspectivas se materializan en las conclusiones a las que llega el congreso internacional sobre la enseñanza de la matemática moderna, celebrado en Lyon.
Resumo:
Se plantea la necesidad urgente de reformar la enseñanza de la matemática en su metodología y en su propia estructuración como ciencia para que sirve a la formación tanto del hombre de hoy que vive en una sociedad específica, con sus propias exigencias como a la formación del hombre, del individuo. Por tanto, el conocimiento del lenguaje matemático es esencial, con unos objetivos generales señalados para todos los alumnos y otros específicos adaptados a la evolución psicopedagógica de cada uno de ellos. De ahí, que haya que concretar las posibilidades educativas de la matemática en la segunda etapa de la Educación General Básica.
Resumo:
Resumen basado en el de la publicación
Resumo:
En esta ponencia se presenta la necesidad de realizar actividades para que se desarrolle el saber práctico profesional en la formación inicial de maestros en el Area didáctica de la matemática. Para ello, una de las actividadades más importantes es realizar, aplicar y evaluar diseños curriculares concretos. Para alcanzar este objetivo, la autora proporciona un estudio de la estructura de los contenidos formativos, así como una propuesta metodológica.
Resumo:
Resumen tomado de la publicaci??n
Resumo:
Resumen tomado parcialmente del autor
Resumo:
Observar el grado de asimilación del concepto de la multiplicación adquirido mediante los sistemas de enseñanza tradicionales, exceptuando en segundo de EGB. Deducir, de ahí, si la adquisición es buena y en qué cursos está mejor asimilado el concepto o si por el contrario solamente se ha adquirido un hábito mecánico. La hipótesis es la siguiente: si todos los niños que resuelven correctamente los problemas que implican alguna multiplicación comprenden el significado de dichas operaciones, entonces sabrán encontrar otra forma de representar dichos problemas. 60 niños entre siete y diez u once años, sin discriminación de sexo y cursando segundo, tercero, cuarto y quinto curso de EGB en el Colegio Público Cardenal Despuig; es decir, cuatro grupos de 15 sujetos cada uno. Todos ellos con calificaciones entre suficiente y bien en el área de matemáticas, exceptuando a los de segundo, a los que se les ha aplicado la metodología operatoria en vez de la tradicional pero sólo durante el segundo trimestre, por lo que se escoge a los más aventajados, es decir, a los calificados con notables y sobresalientes. Corresponden según Piaget a la etapa de las operaciones concretas. Se analiza en primer lugar la teoría de Piaget, haciendo referencia a los conceptos fundamentales de la psicología genética y a los estadios evolutivos. Se profundiza en el de las operaciones concretas, analizando como trata este estadio el tema de las matemáticas. Seguidamente se analiza la evolución histórica de la enseñanza de las matemáticas, revisando la metodología utilizada. Por último, se observa la manera de tratar el tema de la multiplicación en los libros de texto. Desde un marco experimental se realiza un estudio sobre la metodología empleada en la enseñanza de las matemáticas: tradicional, con memorización de tablas y ejercicios prácticos, o bien operacional, de manera activa y en contacto con la realidad. Prueba escrita individual con cinco cuestiones a resolver de manera gráfica utilizando dibujos, palitos, bolas, etc. Posteriormente, la resolución se realiza de la manera habitual en clase, es decir, con operaciones numéricas. El método utilizado es un híbrido entre la metodología clínica de Piaget y la representación gráfica del IMIPAE de Barcelona. No interesa analizar cuántos niños han realizado la tarea ni como lo han hecho; lo que se pretende es estudiar cuáles han sido los errores y porque se han cometido. Por este motivo los datos se han clasificado en aciertos cuando había buena solución del problema, en error de procedimiento cuando no se planteaba bien el problema y en error de cálculo. Por otra parte, se ha realizado un análisis de la forma espontánea que los niños han encontrado para resolver el problema de forma gráfica. La matemática, que es considerada como el instrumento más apto para ejercitar el razonamiento, no es presentada al niño como un objeto de reflexión que sirva para una construcción intelectual, sino como un modelo terminado que debe retener en la memoria; la individualidad, originalidad, creatividad, etc., están rechazadas de plano, siempre se espera que el niño reaccione de una manera prevista. La adquisición mecánica de los contenidos provoca la asimilación deformante de los mismos sin que se dé lugar a la acomodación y, por tanto, a una restructuración que favorezca los procesos operatorios del pensamiento. Es necesario cambiar la metodología y respetar la evolución del niño; éste ha de saber el porqué de los números y de las operaciones matemáticas, y disfrutar de una mayor autonomía en la adquisición de conocimientos. La multiplicación, en todos los niveles, apenas se ha captado en su esencia. La representación gráfica nos muestra que el niño no es capaz de generar de forma inmediata la representación aritmética fuera del contexto escolar. Muchos niños no saben que sólo se pueden sumar elementos iguales. Las calificaciones en esta área no coinciden con la conducta medida. Aún en quinto no se ha adquirido o se ha adquirido insuficientemente el concepto de multiplicación. La resolución de problemas se realiza de manera rutinaria, mecánica, sin comprensión; sin embargo, los alumnos de segundo, por la metodología operatoria, están acostumbrados a experimentar con la realidad y sí han sabido generalizar a un contexto desconocido. El psicólogo escolar, al conocer la realidad psíquica del alumno y su momento evolutivo, puede marcar las pautas adecuadas y trabajar periódicamente en colaboración con los maestros. Así se podrán recopilar y analizar las conductas que manifiestan los niños para así posibilitar aprendizajes que representen un descubrimiento y una construcción por parte del niño, orientando la actividad hacia un comportamiento asimilado, acomodado y relacionado con los demás conocimientos. Este estudio es introductorio. Al tratar con una muestra no representativa no se pueden generalizar los resultados.