56 resultados para RESOLVENT OF OPERATORS
Resumo:
Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.
Resumo:
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
Resumo:
Based only on the parallel-transport condition, we present a general method to compute Abelian or non-Abelian geometric phases acquired by the basis states of pure or mixed density operators, which also holds for nonadiabatic and noncyclic evolution. Two interesting features of the non-Abelian geometric phase obtained by our method stand out: i) it is a generalization of Wilczek and Zee`s non-Abelian holonomy, in that it describes nonadiabatic evolution where the basis states are parallelly transported between distinct degenerate subspaces, and ii) the non-Abelian character of our geometric phase relies on the transitional evolution of the basis states, even in the nondegenerate case. We apply our formalism to a two-level system evolving nonadiabatically under spontaneous decay to emphasize the non- Abelian nature of the geometric phase induced by the reservoir. We also show, through the generalized invariant theory, that our general approach encompasses previous results in the literature. Copyright (c) EPLA, 2008.
Resumo:
Motivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc.
Resumo:
The immersed boundary method is a versatile tool for the investigation of flow-structure interaction. In a large number of applications, the immersed boundaries or structures are very stiff and strong tangential forces on these interfaces induce a well-known, severe time-step restriction for explicit discretizations. This excessive stability constraint can be removed with fully implicit or suitable semi-implicit schemes but at a seemingly prohibitive computational cost. While economical alternatives have been proposed recently for some special cases, there is a practical need for a computationally efficient approach that can be applied more broadly. In this context, we revisit a robust semi-implicit discretization introduced by Peskin in the late 1970s which has received renewed attention recently. This discretization, in which the spreading and interpolation operators are lagged. leads to a linear system of equations for the inter-face configuration at the future time, when the interfacial force is linear. However, this linear system is large and dense and thus it is challenging to streamline its solution. Moreover, while the same linear system or one of similar structure could potentially be used in Newton-type iterations, nonlinear and highly stiff immersed structures pose additional challenges to iterative methods. In this work, we address these problems and propose cost-effective computational strategies for solving Peskin`s lagged-operators type of discretization. We do this by first constructing a sufficiently accurate approximation to the system`s matrix and we obtain a rigorous estimate for this approximation. This matrix is expeditiously computed by using a combination of pre-calculated values and interpolation. The availability of a matrix allows for more efficient matrix-vector products and facilitates the design of effective iterative schemes. We propose efficient iterative approaches to deal with both linear and nonlinear interfacial forces and simple or complex immersed structures with tethered or untethered points. One of these iterative approaches employs a splitting in which we first solve a linear problem for the interfacial force and then we use a nonlinear iteration to find the interface configuration corresponding to this force. We demonstrate that the proposed approach is several orders of magnitude more efficient than the standard explicit method. In addition to considering the standard elliptical drop test case, we show both the robustness and efficacy of the proposed methodology with a 2D model of a heart valve. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
l Suppose that X, Y. A and B are Banach spaces such that X is isomorphic to Y E) A and Y is isomorphic to X circle plus B. Are X and Y necessarily isomorphic? In this generality. the answer is no, as proved by W.T. Cowers in 1996. In the present paper, we provide a very simple necessary and sufficient condition on the 10-tuples (k, l, m, n. p, q, r, s, u, v) in N with p+q+u >= 3, r+s+v >= 3, uv >= 1, (p,q)$(0,0), (r,s)not equal(0,0) and u=1 or v=1 or (p. q) = (1, 0) or (r, s) = (0, 1), which guarantees that X is isomorphic to Y whenever these Banach spaces satisfy X(u) similar to X(p)circle plus Y(q), Y(u) similar to X(r)circle plus Y(s), and A(k) circle plus B(l) similar to A(m) circle plus B(n). Namely, delta = +/- 1 or lozenge not equal 0, gcd(lozenge, delta (p + q - u)) divides p + q - u and gcd(lozenge, delta(r + s - v)) divides r + s - v, where 3 = k - I - in + n is the characteristic number of the 4-tuple (k, l, m, n) and lozenge = (p - u)(s - v) - rq is the discriminant of the 6-tuple (p, q, r, s, U, v). We conjecture that this result is in some sense a maximal extension of the classical Pelczynski`s decomposition method in Banach spaces: the case (1, 0. 1, 0, 2. 0, 0, 2. 1. 1). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A = [a(ij)] and B = [b(ij)] be upper triangular n x n matrices that are not similar to direct sums of square matrices of smaller sizes, or are in general position and have the same main diagonal. We prove that A and B are unitarily similar if and only if parallel to h(A(k))parallel to = parallel to h(B(k))parallel to for all h is an element of C vertical bar x vertical bar and k = 1, ..., n, where A(k) := [a(ij)](i.j=1)(k) and B(k) := [b(ij)](i.j=1)(k) are the leading principal k x k submatrices of A and B, and parallel to . parallel to is the Frobenius norm. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
Resumo:
We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.
Resumo:
Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.
Resumo:
We have investigated the polyoxides HOOH, HOOOH, HOOOOH, and HOOO employing the CCSD(T) methodology, and the correlation consistent basis sets. For all molecules, we have computed fundamental vibrational frequencies, structural parameters, rotational constants, and rotation-vibration corrections. For HOOOH, we have obtained a good agreement between our results and microwave and infrared spectra measurements, although for the symmetric OO stretch some important differences were found. Heats of formation were computed using atomization energies, and our recommendation is as follows: Delta H degrees(f,298)(HOOOH) = -21.50 kcal/mol and Delta H degrees(f,298)(HOOOOH) = -10.61 kcal/mol. In the case of HOOO, to estimate the heat of formation, we have constructed three isodesmic reactions to cancel high order correlation effects. The results obtained confirmed that the latter effects are very important for HOOO. The new Delta H degrees(f,298)(HOOO) obtained is 5.5 kcal/mol. We have also calculated the zero-point energies of DO and DOOO to correct the experimental lower limit determined for the Delta H degrees(f,298)(HOOO). The Delta(Delta ZPE) decreases the binding energy of HOOO by 0.56 kcal/mol. Employing the latter value, the new experimental lower limit for Delta H degrees(f,298)(HOOO) is 3.07 kcal/mol, just 2.4 kcal/mol lower than our determination. We expect that the fundamental vibrational frequencies and rotational constants determined for HOOOOH and DOOOOD contribute to its identification in the gas phase. The vibrational spectrum of HOOOOH shows some overlapping with that of HOOOH thus indicating that one may encounter some difficulties in its characterization. We discuss the consequences of the thermochemical properties determined in this work, and suggest that the amount of HOOO present in the atmosphere is smaller than that proposed recently in this journal (J. Phys. Chem A 2007, 111, 4727).