An indecomposable Banach space of continuous functions which has small density
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable. FAPESP[04/03508-6] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
FUNDAMENTA MATHEMATICAE, v.202, n.1, p.43-63, 2009 0016-2736 http://producao.usp.br/handle/BDPI/30615 10.4064/fm202-1-2 |
Idioma(s) |
eng |
Publicador |
POLISH ACAD SCIENCES INST MATHEMATICS |
Relação |
Fundamenta Mathematicae |
Direitos |
closedAccess Copyright POLISH ACAD SCIENCES INST MATHEMATICS |
Palavras-Chave | #Banach spaces #indecomposable Banach spaces #operators #forcing #independence proof #density #C(K) #GROTHENDIECK PROPERTY #OPERATORS #C(K) #Mathematics |
Tipo |
article original article publishedVersion |