An indecomposable Banach space of continuous functions which has small density


Autoria(s): FAJARDO, Rogerio Augusto dos Santos
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight omega(1) < 2(omega) such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.

FAPESP[04/03508-6]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

FUNDAMENTA MATHEMATICAE, v.202, n.1, p.43-63, 2009

0016-2736

http://producao.usp.br/handle/BDPI/30615

10.4064/fm202-1-2

http://dx.doi.org/10.4064/fm202-1-2

Idioma(s)

eng

Publicador

POLISH ACAD SCIENCES INST MATHEMATICS

Relação

Fundamenta Mathematicae

Direitos

closedAccess

Copyright POLISH ACAD SCIENCES INST MATHEMATICS

Palavras-Chave #Banach spaces #indecomposable Banach spaces #operators #forcing #independence proof #density #C(K) #GROTHENDIECK PROPERTY #OPERATORS #C(K) #Mathematics
Tipo

article

original article

publishedVersion