A criterion for unitary similarity of upper triangular matrices in general position


Autoria(s): FARENICK, Douglas; FUTORNY, Vyacheslav; GERASIMOVA, Tatiana G.; SERGEICHUK, Vladimir V.; SHVAI, Nadya
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A = [a(ij)] and B = [b(ij)] be upper triangular n x n matrices that are not similar to direct sums of square matrices of smaller sizes, or are in general position and have the same main diagonal. We prove that A and B are unitarily similar if and only if parallel to h(A(k))parallel to = parallel to h(B(k))parallel to for all h is an element of C vertical bar x vertical bar and k = 1, ..., n, where A(k) := [a(ij)](i.j=1)(k) and B(k) := [b(ij)](i.j=1)(k) are the leading principal k x k submatrices of A and B, and parallel to . parallel to is the Frobenius norm. (C) 2011 Elsevier Inc. All rights reserved.

NSERC

NSERC

CNPq[301743/2007-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fapesp[2010/50347-9]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fapesp[2010/07278-6]

University of Regina

University of Regina

Svjatoslav Vakarchuk Foundation

Svjatoslav Vakarchuk Foundation

Identificador

LINEAR ALGEBRA AND ITS APPLICATIONS, v.435, n.6, p.1356-1369, 2011

0024-3795

http://producao.usp.br/handle/BDPI/30591

10.1016/j.laa.2011.03.021

http://dx.doi.org/10.1016/j.laa.2011.03.021

Idioma(s)

eng

Publicador

ELSEVIER SCIENCE INC

Relação

Linear Algebra and Its Applications

Direitos

closedAccess

Copyright ELSEVIER SCIENCE INC

Palavras-Chave #Unitary similarity #Classification #General position #Frobenius norm #OPERATORS #Mathematics, Applied
Tipo

article

original article

publishedVersion