A criterion for unitary similarity of upper triangular matrices in general position
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A = [a(ij)] and B = [b(ij)] be upper triangular n x n matrices that are not similar to direct sums of square matrices of smaller sizes, or are in general position and have the same main diagonal. We prove that A and B are unitarily similar if and only if parallel to h(A(k))parallel to = parallel to h(B(k))parallel to for all h is an element of C vertical bar x vertical bar and k = 1, ..., n, where A(k) := [a(ij)](i.j=1)(k) and B(k) := [b(ij)](i.j=1)(k) are the leading principal k x k submatrices of A and B, and parallel to . parallel to is the Frobenius norm. (C) 2011 Elsevier Inc. All rights reserved. NSERC NSERC CNPq[301743/2007-0] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fapesp[2010/50347-9] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fapesp[2010/07278-6] University of Regina University of Regina Svjatoslav Vakarchuk Foundation Svjatoslav Vakarchuk Foundation |
Identificador |
LINEAR ALGEBRA AND ITS APPLICATIONS, v.435, n.6, p.1356-1369, 2011 0024-3795 http://producao.usp.br/handle/BDPI/30591 10.1016/j.laa.2011.03.021 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE INC |
Relação |
Linear Algebra and Its Applications |
Direitos |
closedAccess Copyright ELSEVIER SCIENCE INC |
Palavras-Chave | #Unitary similarity #Classification #General position #Frobenius norm #OPERATORS #Mathematics, Applied |
Tipo |
article original article publishedVersion |