Examples of Self-Iterating Lie Algebras, 2


Autoria(s): PETROGRADSKY, V. M.; SHESTAKOV, I. P.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

We study properties of self-iterating Lie algebras in positive characteristic. Let R = K[t(i)vertical bar i is an element of N]/(t(i)(p)vertical bar i is an element of N) be the truncated polynomial ring. Let partial derivative(i) = partial derivative/partial derivative t(i), i is an element of N, denote the respective derivations. Consider the operators v(1) = partial derivative(1) + t(0)(partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...))))); v(2) = partial derivative(2) + t(1)(partial derivative(3) + t(2)(partial derivative(4) + t(3)(partial derivative(5) + t(4)(partial derivative(6) + ...)))). Let L = Lie(p)(v(1), v(2)) subset of Der R be the restricted Lie algebra generated by these derivations. We establish the following properties of this algebra in case p = 2, 3. a) L has a polynomial growth with Gelfand-Kirillov dimension lnp/ln((1+root 5)/2). b) the associative envelope A = Alg(v(1), v(2)) of L has Gelfand-Kirillov dimension 2 lnp/ln((1+root 5)/2). c) L has a nil-p-mapping. d) L, A and the augmentation ideal of the restricted enveloping algebra u = u(0)(L) are direct sums of two locally nilpotent subalgebras. The question whether u is a nil-algebra remains open. e) the restricted enveloping algebra u(L) is of intermediate growth. These properties resemble those of Grigorchuk and Gupta-Sidki groups.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[05/58376-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[RFBR-07-01-00080]

FAPESP[05/60142-7]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP[05/60337-2]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[304991/2006-6]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

JOURNAL OF LIE THEORY, v.19, n.4, p.697-724, 2009

0949-5932

http://producao.usp.br/handle/BDPI/30616

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000274858000005&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

HELDERMANN VERLAG

Relação

Journal of Lie Theory

Direitos

closedAccess

Copyright HELDERMANN VERLAG

Palavras-Chave #Restricted Lie algebras #growth #Grigorchuk group #Gupta-Sidki group #RINGS #NIL #Mathematics
Tipo

article

original article

publishedVersion