On a product formula for the Conley-Zelmder index of symplectic paths and its applications
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP |
Identificador |
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, v.34, n.2, p.167-183, 2008 0232-704X http://producao.usp.br/handle/BDPI/30632 10.1007/s10455-008-9106-z |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Annals of Global Analysis and Geometry |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Conley-Zehnder index #ADJOINT ELLIPTIC-OPERATORS #MASLOV INDEX #MANIFOLD DECOMPOSITIONS #PERIODIC-SOLUTIONS #SPECTRAL FLOW #ITERATION #Mathematics |
Tipo |
article original article publishedVersion |