On a product formula for the Conley-Zelmder index of symplectic paths and its applications


Autoria(s): GOSSON, Maurice De; GOSSON, Serge De; PICCIONE, Paolo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

Using invariance by fixed-endpoints homotopies and a generalized notion of symplectic Cayley transform, we prove a product formula for the Conley-Zehnder index of continuous paths with arbitrary endpoints in the symplectic group. We discuss two applications of the formula, to the metaplectic group and to periodic solutions of Hamiltonian systems.

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

FAPESP

Identificador

ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, v.34, n.2, p.167-183, 2008

0232-704X

http://producao.usp.br/handle/BDPI/30632

10.1007/s10455-008-9106-z

http://dx.doi.org/10.1007/s10455-008-9106-z

Idioma(s)

eng

Publicador

SPRINGER

Relação

Annals of Global Analysis and Geometry

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Conley-Zehnder index #ADJOINT ELLIPTIC-OPERATORS #MASLOV INDEX #MANIFOLD DECOMPOSITIONS #PERIODIC-SOLUTIONS #SPECTRAL FLOW #ITERATION #Mathematics
Tipo

article

original article

publishedVersion