Coherent state quantization of paragrassmann algebras


Autoria(s): BAZ, M. El; FRESNEDA, R.; GAZEAU, J. P.; HASSOUNI, Y.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.

Identificador

JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, v.43, n.38, 2010

1751-8113

http://producao.usp.br/handle/BDPI/29553

10.1088/1751-8113/43/38/385202

http://dx.doi.org/10.1088/1751-8113/43/38/385202

Idioma(s)

eng

Publicador

IOP PUBLISHING LTD

Relação

Journal of Physics A-mathematical and Theoretical

Direitos

restrictedAccess

Copyright IOP PUBLISHING LTD

Palavras-Chave #QUANTUM-MECHANICS #SPIN #STATISTICS #SYSTEMS #Physics, Multidisciplinary #Physics, Mathematical
Tipo

article

original article

publishedVersion