Local solvability for a class of evolution equations


Autoria(s): COLOMBINI, Ferruccio; CORDARO, Paulo D.; PERNAZZA, Ludovico
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

Motivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc.

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fapesp

Identificador

JOURNAL OF FUNCTIONAL ANALYSIS, v.258, n.10, p.3469-3491, 2010

0022-1236

http://producao.usp.br/handle/BDPI/30552

10.1016/j.jfa.2009.12.004

http://dx.doi.org/10.1016/j.jfa.2009.12.004

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Functional Analysis

Direitos

closedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Local solvability #Linear PDE #Evolution equations #Mathematics
Tipo

article

original article

publishedVersion