Local solvability for a class of evolution equations
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
Motivated by the celebrated example of Y. Kannai of a linear partial differential operator which is hypoelliptic but not locally solvable, we consider it class of evolution operators with real-analytic coefficients and study their local solvability both in L(2) and in the weak sense. In order to do so we are led to propose a generalization of the Nirenberg-Treves condition (psi) which is suitable to our study. (C) 2009 Published by Elsevier Inc. CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fapesp |
Identificador |
JOURNAL OF FUNCTIONAL ANALYSIS, v.258, n.10, p.3469-3491, 2010 0022-1236 http://producao.usp.br/handle/BDPI/30552 10.1016/j.jfa.2009.12.004 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Functional Analysis |
Direitos |
closedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Local solvability #Linear PDE #Evolution equations #Mathematics |
Tipo |
article original article publishedVersion |