65 resultados para P-Compact Space


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we prove the existence of closed geodesics in the leaf space of some classes of singular Riemannian foliations (s.r.f.), namely s.r.fs. that admit sections or have no horizontal conjugate points. We also investigate the shortening process with respect to Riemannian foliations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we compute the fundamental group of each connected component of the function space of maps from it closed surface into the projective space

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we give a partially affirmative answer to the following question posed by Haizhong Li: is a complete spacelike hypersurface in De Sitter space S(1)(n+1)(c), n >= 3, with constant normalized scalar curvature R satisfying n-2/nc <= R <= c totally umbilical? (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given manifolds M and N, with M compact, we study the geometrical structure of the space of embeddings of M into N, having less regularity than C(infinity) quotiented by the group of diffeomorphisms of M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we show for which odd-dimensional homotopy spherical space forms the Borsuk-Ulam theorem holds. These spaces are the quotient of a homotopy odd-dimensional sphere by a free action of a finite group. Also, the types of these spaces which admit a free involution are characterized. The case of even-dimensional homotopy spherical space forms is basically known.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve the Bjorling problem for timelike surfaces in the Lorentz-Minkowski space through a split-complex representation formula obtained for this kind of surface. Our approach uses the split-complex numbers and natural split-holomorphic extensions. As applications, we show that the minimal timelike surfaces of revolution as well as minimal ruled timelike surfaces can be characterized as solutions of certain adequate Bjorling problems in the Lorentz-Minkowski space. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whenever P is a topological property, we say that a topological space is star P if whenever U is an open cover of X, there is a subspace A subset of X with property P such that X = St(A, U). We study the relationships of star P properties for P is an element of {Lindelof, sigma-compact, countable} with other Lindelof type properties. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under p = c, we prove that it is possible to endow the free abelian group of cardinality c with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.