The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant. |
Identificador |
MATHEMATISCHE ZEITSCHRIFT, v.267, n.3/Abr, p.523-533, 2011 0025-5874 http://producao.usp.br/handle/BDPI/30689 10.1007/s00209-009-0633-5 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Mathematische Zeitschrift |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #Minimal hypersurfaces in space forms #Gauss-Kronecker curvature #COMPLETE RIEMANNIAN-MANIFOLDS #Mathematics |
Tipo |
article original article publishedVersion |