The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms


Autoria(s): ASPERTI, A. C.; CHAVES, R. M. B.; SOUSA JR., L. A. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.

Identificador

MATHEMATISCHE ZEITSCHRIFT, v.267, n.3/Abr, p.523-533, 2011

0025-5874

http://producao.usp.br/handle/BDPI/30689

10.1007/s00209-009-0633-5

http://dx.doi.org/10.1007/s00209-009-0633-5

Idioma(s)

eng

Publicador

SPRINGER

Relação

Mathematische Zeitschrift

Direitos

closedAccess

Copyright SPRINGER

Palavras-Chave #Minimal hypersurfaces in space forms #Gauss-Kronecker curvature #COMPLETE RIEMANNIAN-MANIFOLDS #Mathematics
Tipo

article

original article

publishedVersion