Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points. Spanish MEC/FEDER Spanish MEC-FEDER[MTM2007-60731] Regional Junta Andalucia[P06-FQM-01951] Regional Junta Andalucia Spanish MEC Spanish MEC[MTM2007-64504] Capes, Brasil[BEX 1509-08-0] Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
Identificador |
MATHEMATISCHE ZEITSCHRIFT, v.267, n.1/Fev, p.221-233, 2011 0025-5874 http://producao.usp.br/handle/BDPI/30694 10.1007/s00209-009-0617-5 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Mathematische Zeitschrift |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #TIME-LIKE GEODESICS #CIRCLE-ACTIONS #ISOMETRY GROUP #SPACETIMES #EXISTENCE #4-MANIFOLDS #Mathematics |
Tipo |
article original article publishedVersion |