Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field


Autoria(s): FLORES, Jose Luis; JAVALOYES, Miguel Angel; PICCIONE, Paolo
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.

Spanish MEC/FEDER

Spanish MEC-FEDER[MTM2007-60731]

Regional Junta Andalucia[P06-FQM-01951]

Regional Junta Andalucia

Spanish MEC

Spanish MEC[MTM2007-64504]

Capes, Brasil[BEX 1509-08-0]

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Identificador

MATHEMATISCHE ZEITSCHRIFT, v.267, n.1/Fev, p.221-233, 2011

0025-5874

http://producao.usp.br/handle/BDPI/30694

10.1007/s00209-009-0617-5

http://dx.doi.org/10.1007/s00209-009-0617-5

Idioma(s)

eng

Publicador

SPRINGER

Relação

Mathematische Zeitschrift

Direitos

closedAccess

Copyright SPRINGER

Palavras-Chave #TIME-LIKE GEODESICS #CIRCLE-ACTIONS #ISOMETRY GROUP #SPACETIMES #EXISTENCE #4-MANIFOLDS #Mathematics
Tipo

article

original article

publishedVersion