Spaces of compact operators on C(2(m) circle plus [0, alpha]) spaces


Autoria(s): GALEGO, Eloi Medina
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved.

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.370, n.2, p.406-414, 2010

0022-247X

http://producao.usp.br/handle/BDPI/30710

10.1016/j.jmaa.2010.05.032

http://dx.doi.org/10.1016/j.jmaa.2010.05.032

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Isomorphic classification of spaces of compact operators #Cantor cubes #Intervals of ordinal numbers #BANACH-SPACES #ISOMORPHIC CLASSIFICATIONS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion