Spaces of compact operators on C(2(m) circle plus [0, alpha]) spaces
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We classify up to isomorphism the spaces of compact operators K(E, F), where E and F are Banach spaces of all continuous functions defined on the compact spaces 2(m) circle plus [0, alpha], the topological sum of Cantor cubes 2(m) and the intervals of ordinal numbers [0, alpha]. More precisely, we prove that if 2(m) and aleph(gamma) are not real-valued measurable cardinals and n >= aleph(0) is not sequential cardinal, then for every ordinals xi, eta, lambda and mu with xi >= omega(1), eta >= omega(1), lambda = mu < omega or lambda, mu is an element of [omega(gamma), omega(gamma+1)[, the following statements are equivalent: (a) K(C(2(m) circle plus [0, lambda]), C(2(n) circle plus [0, xi])) and K(C(2(m) circle plus [0, mu]), C(2(n) circle plus [0, eta]) are isomorphic. (b) Either C([0, xi]) is isomorphic to C([0, eta] or C([0, xi]) is isomorphic to C([0, alpha p]) and C([0, eta]) is isomorphic to C([0,alpha q]) for some regular cardinal alpha and finite ordinals p not equal q. Thus, it is relatively consistent with ZFC that this result furnishes a complete isomorphic classification of these spaces of compact operators. (C) 2010 Elsevier Inc. All rights reserved. |
Identificador |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.370, n.2, p.406-414, 2010 0022-247X http://producao.usp.br/handle/BDPI/30710 10.1016/j.jmaa.2010.05.032 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Isomorphic classification of spaces of compact operators #Cantor cubes #Intervals of ordinal numbers #BANACH-SPACES #ISOMORPHIC CLASSIFICATIONS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |