37 resultados para Silicon carbide substrates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Topographic and optical contrasts formed by Ga+ ion irradiation of thin films of amorphous silicon carbide have been investigated with scanning near-field optical microscopy. The influence of ion-irradiation dose has been studied in a pattern of sub-micrometre stripes. While the film thickness decreases monotonically with ion dose, the optical contrast rapidly increases to a maximum value and then decreases gradually. The results are discussed in terms of the competition between the effects of ion implantation and surface milling by the ion beam. The observed effects are important for uses of amorphous silicon carbide thin films as permanent archives in optical data storage applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon carbide (SiC) is a material of great technological interest for engineering applications concerning hostile environments where silicon-based components cannot work (beyond 623 K). Single point diamond turning (SPDT) has remained a superior and viable method to harness process efficiency and freeform shapes on this harder material. However, it is extremely difficult to machine this ceramic consistently in the ductile regime due to sudden and rapid tool wear. It thus becomes non trivial to develop an accurate understanding of tool wear mechanism during SPDT of SiC in order to identify measures to suppress wear to minimize operational cost.

In this paper, molecular dynamics (MD) simulation has been deployed with a realistic analytical bond order potential (ABOP) formalism based potential energy function to understand tool wear mechanism during single point diamond turning of SiC. The most significant result was obtained using the radial distribution function which suggests graphitization of diamond tool during the machining process. This phenomenon occurs due to the abrasive processes between these two ultra hard materials. The abrasive action results in locally high temperature which compounds with the massive cutting forces leading to sp3–sp2 order–disorder transition of diamond tool. This represents the root cause of tool wear during SPDT operation of cubic SiC. Further testing led to the development of a novel method for quantitative assessment of the progression of diamond tool wear from MD simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/s on an ultra-precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM FIB- FEI Quanta 3D FEG) was used to examine the cutting tool before and after the machining. A surface finish of Ra=9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon, germanium, etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which are normally considered as a prerequisite to ductile-regime machining, may not be observed during ductile-regime machining of polycrystalline materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shear instability of the nanoscrystalline 3C-SiC during nanometric cutting at a cutting speed of 100?m/s has been investigated using molecular dynamics simulation. The deviatoric stress in the cutting zone was found to cause sp3-sp2 disorder resulting in the local formation of SiC-graphene and Herzfeld-Mott transitions of 3C-SiC at much lower transition pressures than that required under pure compression. Besides explaining the ductility of SiC at 1500?K, this is a promising phenomenon in general nanoscale engineering of SiC. It shows that modifying the tetrahedral bonding of 3C-SiC, which would otherwise require sophisticated pressure cells, can be achieved more easily by introducing non-hydrostatic stress conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a newly proposed machining method named “surface defect machining” (SDM) [Wear, 302, 2013 (1124-1135)] was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300K using MD simulation. The results were compared with isothermal high temperature machining at 1200K under the same machining parameters, emulating ductile mode micro laser assisted machining (µ-LAM) and with conventional cutting at 300 K. In the MD simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the <100> direction using a single point diamond tool at a cutting speed of 10 m/sec. Cutting forces, sub-surface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300K). The increase of friction coefficient however was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reducing operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Glenn Research Centre of NASA, USA (www.grc.nasa.gov/WWW/SiC/, silicon carbide electronics) is in pursuit of realizing bulk manufacturing of silicon carbide (SiC), specifically by mechanical means. Single point diamond turning (SPDT) technology which employs diamond (the hardest naturally-occurring material realized to date) as a cutting tool to cut a workpiece is a highly productive manufacturing process. However, machining SiC using SPDT is a complex process and, while several experimental and analytical studies presented to date aid in the understanding of several critical processes of machining SiC, the current knowledge on the ductile behaviour of SiC is still sparse. This is due to a number of simultaneously occurring physical phenomena that may take place on multiple length and time scales. For example, nucleation of dislocation can take place at small inclusions that are of a few atoms in size and once nucleated, the interaction of these nucleations can manifest stresses on the micrometre length scales. The understanding of how stresses manifest during fracture in the brittle range, or dislocations/phase transformations in the ductile range, is crucial in understanding the brittle–ductile transition in SiC. Furthermore, there is a need to incorporate an appropriate simulation-based approach in the manufacturing research on SiC, owing primarily to the number of uncertainties in the experimental research that includes wear of the cutting tool, poor controllability of the nano-regime machining scale (effective thickness of cut), and coolant effects (interfacial phenomena between the tool, workpiece/chip and coolant), etc. In this review, these two problems are combined together to posit an improved understanding on the current theoretical knowledge on the SPDT of SiC obtained from molecular dynamics simulation.