25 resultados para Semiconductor Manufacturing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual metrology (VM) aims to predict metrology values using sensor data from production equipment and physical metrology values of preceding samples. VM is a promising technology for the semiconductor manufacturing industry as it can reduce the frequency of in-line metrology operations and provide supportive information for other operations such as fault detection, predictive maintenance and run-to-run control. The prediction models for VM can be from a large variety of linear and nonlinear regression methods and the selection of a proper regression method for a specific VM problem is not straightforward, especially when the candidate predictor set is of high dimension, correlated and noisy. Using process data from a benchmark semiconductor manufacturing process, this paper evaluates the performance of four typical regression methods for VM: multiple linear regression (MLR), least absolute shrinkage and selection operator (LASSO), neural networks (NN) and Gaussian process regression (GPR). It is observed that GPR performs the best among the four methods and that, remarkably, the performance of linear regression approaches that of GPR as the subset of selected input variables is increased. The observed competitiveness of high-dimensional linear regression models, which does not hold true in general, is explained in the context of extreme learning machines and functional link neural networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper proposes max separation clustering (MSC), a new non-hierarchical clustering method used for feature extraction from optical emission spectroscopy (OES) data for plasma etch process control applications. OES data is high dimensional and inherently highly redundant with the result that it is difficult if not impossible to recognize useful features and key variables by direct visualization. MSC is developed for clustering variables with distinctive patterns and providing effective pattern representation by a small number of representative variables. The relationship between signal-to-noise ratio (SNR) and clustering performance is highlighted, leading to a requirement that low SNR signals be removed before applying MSC. Experimental results on industrial OES data show that MSC with low SNR signal removal produces effective summarization of the dominant patterns in the data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel diode test structures have been manufactured to characterize long-range dopant diffusion in tungsten silicide layers. A tungsten silicide to p-type silicon contact has been characterized as a Schottky barrier rectifying contact with a silicide work function of 4.8 eV. Long-range diffusion of boron for an anneal at 900 °C for 30 min has been shown to alter this contact to become ohmic. Long-range diffusion of phosphorus with a similar anneal alters the contact to become a bipolar n-p diode. Bipolar diode action is demonstrated experimentally for anneal schedules of 30 min at 900 °C, indicating long-range diffusion of phosphorus (~38 µm), SIMS analysis shows dopant redistribution is adversely affected by segregation to the silicide/oxide interface. The concept of conduit diffusion has been demonstrated experimentally for application in advanced bipolar transistor technology. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Semiconductor fabrication involves several sequential processing steps with the result that critical production variables are often affected by a superposition of affects over multiple steps. In this paper a Virtual Metrology (VM) system for early stage measurement of such variables is presented; the VM system seeks to express the contribution to the output variability that is due to a defined observable part of the production line. The outputs of the processed system may be used for process monitoring and control purposes. A second contribution of this work is the introduction of Elastic Nets, a regularization and variable selection technique for the modelling of highly-correlated datasets, as a technique for the development of VM models. Elastic Nets and the proposed VM system are illustrated using real data from a multi-stage etch process used in the fabrication of disk drive read/write heads. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In semiconductor fabrication processes, effective management of maintenance operations is fundamental to decrease costs associated with failures and downtime. Predictive Maintenance (PdM) approaches, based on statistical methods and historical data, are becoming popular for their predictive capabilities and low (potentially zero) added costs. We present here a PdM module based on Support Vector Machines for prediction of integral type faults, that is, the kind of failures that happen due to machine usage and stress of equipment parts. The proposed module may also be employed as a health factor indicator. The module has been applied to a frequent maintenance problem in semiconductor manufacturing industry, namely the breaking of the filament in the ion-source of ion-implantation tools. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma etch is a key process in modern semiconductor manufacturing facilities as it offers process simplification and yet greater dimensional tolerances compared to wet chemical etch technology. The main challenge of operating plasma etchers is to maintain a consistent etch rate spatially and temporally for a given wafer and for successive wafers processed in the same etch tool. Etch rate measurements require expensive metrology steps and therefore in general only limited sampling is performed. Furthermore, the results of measurements are not accessible in real-time, limiting the options for run-to-run control. This paper investigates a Virtual Metrology (VM) enabled Dynamic Sampling (DS) methodology as an alternative paradigm for balancing the need to reduce costly metrology with the need to measure more frequently and in a timely fashion to enable wafer-to-wafer control. Using a Gaussian Process Regression (GPR) VM model for etch rate estimation of a plasma etch process, the proposed dynamic sampling methodology is demonstrated and evaluated for a number of different predictive dynamic sampling rules. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasingly semiconductor manufacturers are exploring opportunities for virtual metrology (VM) enabled process monitoring and control as a means of reducing non-value added metrology and achieving ever more demanding wafer fabrication tolerances. However, developing robust, reliable and interpretable VM models can be very challenging due to the highly correlated input space often associated with the underpinning data sets. A particularly pertinent example is etch rate prediction of plasma etch processes from multichannel optical emission spectroscopy data. This paper proposes a novel input-clustering based forward stepwise regression methodology for VM model building in such highly correlated input spaces. Max Separation Clustering (MSC) is employed as a pre-processing step to identify a reduced srt of well-conditioned, representative variables that can then be used as inputs to state-of-the-art model building techniques such as Forward Selection Regression (FSR), Ridge regression, LASSO and Forward Selection Ridge Regression (FCRR). The methodology is validated on a benchmark semiconductor plasma etch dataset and the results obtained are compared with those achieved when the state-of-art approaches are applied directly to the data without the MSC pre-processing step. Significant performance improvements are observed when MSC is combined with FSR (13%) and FSRR (8.5%), but not with Ridge Regression (-1%) or LASSO (-32%). The optimal VM results are obtained using the MSC-FSR and MSC-FSRR generated models. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a multiple classifier machine learning methodology for Predictive Maintenance (PdM) is presented. PdM is a prominent strategy for dealing with maintenance issues given the increasing need to minimize downtime and associated costs. One of the challenges with PdM is generating so called ’health factors’ or quantitative indicators of the status of a system associated with a given maintenance issue, and determining their relationship to operating costs and failure risk. The proposed PdM methodology allows dynamical decision rules to be adopted for maintenance management and can be used with high-dimensional and censored data problems. This is achieved by training multiple classification modules with different prediction horizons to provide different performance trade-offs in terms of frequency of unexpected breaks and unexploited lifetime and then employing this information in an operating cost based maintenance decision system to minimise expected costs. The effectiveness of the methodology is demonstrated using a simulated example and a benchmark semiconductor manufacturing maintenance problem.