22 resultados para 100603 Logic Design

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Side-channel attacks (SCA) threaten electronic cryptographic devices and can be carried out by monitoring the physical characteristics of security circuits. Differential Power Analysis (DPA) is one the most widely studied side-channel attacks. Numerous countermeasure techniques, such as Random Delay Insertion (RDI), have been proposed to reduce the risk of DPA attacks against cryptographic devices. The RDI technique was first proposed for microprocessors but it was shown to be unsuccessful when implemented on smartcards as it was vulnerable to a variant of the DPA attack known as the Sliding-Window DPA attack.Previous research by the authors investigated the use of the RDI countermeasure for Field Programmable Gate Array (FPGA) based cryptographic devices. A split-RDI technique wasproposed to improve the security of the RDI countermeasure. A set of critical parameters wasalso proposed that could be utilized in the design stage to optimize a security algorithm designwith RDI in terms of area, speed and power. The authors also showed that RDI is an efficientcountermeasure technique on FPGA in comparison to other countermeasures.In this article, a new RDI logic design is proposed that can be used to cost-efficiently implementRDI on FPGA devices. Sliding-Window DPA and realignment attacks, which were shown to beeffective against RDI implemented on smartcard devices, are performed on the improved RDIFPGA implementation. We demonstrate that these attacks are unsuccessful and we also proposea realignment technique that can be used to demonstrate the weakness of RDI implementations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology for rapid silicon design of biorthogonal wavelet transform systems has been developed. This is based on generic, scalable architectures for the forward and inverse wavelet filters. These architectures offer efficient hardware utilisation by combining the linear phase property of biorthogonal filters with decimation and interpolation. The resulting designs have been parameterised in terms of types of wavelet and wordlengths for data and coefficients. Control circuitry is embedded within these cores that allows them to be cascaded for any desired level of decomposition without any interface logic. The time to produce silicon designs for a biorthogonal wavelet system is only the time required to run synthesis and layout tools with no further design effort required. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. These designs are also portable across a range of foundries and are suitable for FPGA and PLD implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Run Time Reconfiguration (RTR) systems, the amount of reconfiguration is considerable when compared to the circuit changes implemented. This is because reconfiguration is not considered as part of the design flow. This paper presents a method for reconfigurable circuit design by modeling the underlying FPGA reconfigurable circuitry and taking it into consideration in the system design. This is demonstrated for an image processing example on the Xilinx Virtex FPGA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid design methodology for biorthogonal wavelet transform cores has been developed based on a generic, scaleable architecture for wavelet filters. The architecture offers efficient hardware utilisation by combining the linear phase property of biorthogonal filters with decimation in a MAC-based implementation. The design has been captured in VHDL and parameterised in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet system is typically less than a day. The silicon cores produced are comparable in area and performance to hand-crafted designs, The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The competition between Photoinduced electron transfer (PET) and other de-excitation pathways such as fluorescence and phosphorescence can be controlled within designed molecular structures. Depending on the particular design, the resulting optical output is thus a function of various inputs such as ion concentration and excitation light dose. Once digitized into binary code, these input-output patterns can be interpreted according to Boolean logic. The single-input logic types of YES and NOT cover simple sensors and the double- (or higher-) input logic types represent other gates such as AND and OR. The logic-based arithmetic processors such as half-adders and half-subtractors are also featured. Naturally, a principal application of the more complex gates is in multi-sensing contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemists are now able to emulate the ideas and instruments of mathematics and computer science with molecules. The integration of molecular logic gates into small arrays has been a growth area during the last few years. The design principles underlying a collection of these cases are examined. Some of these computing molecules are applicable in medical- and biotechnologies. Cases of blood diagnostics, 'lab-on-a-molecule' systems, and molecular computational identification of small objects are included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

People are now becoming more environmentally aware and as a consequence of this, industries such as the aviation industry are striving to design more environmentally friendly products. To achieve this, the current design methodologies must be modified to ensure these issues are considered from product conception through to disposal. This paper discusses the environmental problems in relation to the aviation industry and highlights some logic for making the change from the traditional Systems Engineering approach to the recent design paradigm known as Value Driven Design. Preliminary studies have been undertaken to aid in the understanding of this methodology and the existing surplus value objective function. The main results from the work demonstrate that surplus value works well bringing disparate issues such as manufacture and green taxes together to aid decision making. Further, to date studies on surplus value have used simple sensitivity analysis, but deeper consideration shows non-linear interactions between some of the variables and further work will be needed to fully account for complex issues such as environmental impact and taxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology which allows a non-specialist to rapidly design silicon wavelet transform cores has been developed. This methodology is based on a generic architecture utilizing time-interleaved coefficients for the wavelet transform filters. The architecture is scaleable and it has been parameterized in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is designed in such a way that the cores can also be cascaded without any interface glue logic for any desired level of decomposition. This parameterization allows the use of any orthonormal wavelet family thereby extending the design space for improved transformation from algorithm to silicon. Case studies for stand alone and cascaded silicon cores for single and multi-stage analysis respectively are reported. The typical design time to produce silicon layout of a wavelet based system has been reduced by an order of magnitude. The cores are comparable in area and performance to hand-crafted designs. The designs have been captured in VHDL so they are portable across a range of foundries and are also applicable to FPGA and PLD implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rapid design methodology for biorthogonal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture for the wavelet filters. The architecture offers efficient hardware utilization by combining the linear phase property of biorthogonal filters with decimation in a MAC based implementation. The design has been captured in VHDL and parameterized in terms of wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. The design time to produce silicon layout of a biorthogonal wavelet based system is typically less than a day. The resulting silicon cores produced are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.