68 resultados para tungsten electrode


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ~20nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-phase W, selectively grown at 440C had resistivity 20 micro-ohm cm and maximum layer thickness 100nm. Hydrogen passivation proved essential in this process. Higher deposition temperatures resulted in increased layer thickness but incorporated WSi2 and alpha- phase W. Self limiting W grown on polycrystalline and heavily doped silicon yielded reduced thickness. Boron is involved in the WF6 reduction reaction but phosphorus is not and becomes incorporated in the W layer. The paper establishes an optimised and novel CVD process suited to IC contact technology. A funded technology transfer contract with National Semiconductor Greenock (M Fallon) resulted from this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron beam trajectory simulations have been performed to design a new electron beam ion trap. The design of the magnet and electrode structures was optimized based on the results of the simulations. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal nanoclusters can be produced cheaply and precisely in an electrochemical environment. Experimentally this method works in some systems, but not in others, and the unusual stability of the clusters has remained a mystery. We have simulated the deposition of the clusters using classical molecular dynamics and studied their stability by grand-canonical Monte Carlo simulations. We find that electrochemically stable clusters occur only in those cases where the two metals involved form stable alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows that penetration of the applied electric field into the electrodes of a ferroelectric thin film capacitor produces both an interfacial capacitance and an effective mechanism for electron tunneling. The model predictions are compared with experimental results on Au-BST-SrRuO3 capacitors of varying thicknesses, and the agreement is excellent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast electrochemical reduction of iodine in the RTIL 1-butyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide, [C(4)mim][NTf2], is reported and the kinetics and mechanism of the process elucidated. Two reduction peaks were observed. The first reduction peak is assigned to the process

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.