49 resultados para PENSAMIENTO CRÍTICO LATINOAMERICANO

em Funes: Repositorio digital de documentos en Educación Matemática - Colombia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se aborda, desde una perspectiva socioepistemológica, la construcción del conocimiento y el desarrollo del pensamiento proporcional buscando generar espacios de reflexión y de interacción con el profesorado y el estudiantado que posibiliten la resignificación del conocimiento institucionalizado. Recurre entre otras fuentes y técnicas, al análisis de textos didácticos clásicos y contemporáneos, con el objeto de visualizar la naturaleza y evolución de los saberes matemáticos y escolares en juego, y, decidir aspectos necesarios a los diseños de secuencias didácticas en orden a favorecer la significación de fracciones, razones y proporciones como conceptos-herramientas en el estudiantado en el ámbito de la proporcionalidad. Tiene el objetivo de comprender de qué manera las prácticas que toman lugar en el aula, contribuyen al desarrollo del pensamiento proporcional de los estudiantes, en los niveles 5º al 10º de la escolaridad obligatoria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El estudio de procesos de aprendizaje en el “aula tradicional” tiene que cambiar si queremos evidenciar otras formas de construcción del conocimiento matemático, por ello es necesario considerar otros escenarios donde la matemática no es objeto de estudio pero que sin embargo el conocimiento matemático subyace. Un ejemplo de esto es el conocimiento cotidiano en un escenario de difusión, característico de ideas, intuiciones o sentido común donde subyace una matemática. Con lo anterior se hace un estudio bajo la teoría socioepistemológica, tratando de caracterizar este conocimiento hacia su uso mediante ideas variacionales con tecnología. Con el estudio del uso del conocimiento, se intenta desarrollar un pensamiento variacional característico del escenario a través del constructo “uso de la gráfica”, donde además se intenta encontrar alguna evidencia de nociones de integración tecnológica al conocimiento del participante.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La tecnología puede resultar un recurso didáctico para que los estudiantes examinen situaciones y problemas desde diversos ángulos, específicamente, el uso de software dinámico ofrece un medio útil para que ellos visualicen, exploren y construyan relaciones matemáticas. Estos apoyos modifican tan fuertemente el medio ambiente de trabajo que no basta con adaptar situaciones matemáticas clásicas, hay que concebir nuevas situaciones que tomen en consideración las potencialidades y las restricciones de la tecnología. Esto ha llevado a la creación de una génesis instrumental que estudia la construcción hecha por el estudiante cuando interactúa con un artefacto, convirtiéndolo en instrumento, a través de un proceso, de manera tal que se lo apropia y lo hace parte de su actividad matemática, actividad que en esta investigación está relacionada con el desarrollo del pensamiento covariacional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo pretende dar a conocer el avance, que hasta el momento se ha logrado, en la línea de investigación: “Visualización y pensamiento global en Matemáticas”, la cual persigue, a partir de la Teoría de Representaciones Semióticas de Duval, la caracterización del estilo de pensamiento global y local, de estudiantes de nivel medio superior y superior y de sus profesores. En particular reporto los resultados preliminares encontrados hasta el momento con estudiantes de primeros semestres de licenciatura al abordar un problema de precálculo, contrastado con desempeños en ajedrez para interpretar aspectos semejantes en cuanto a la forma local o global de pensar un problema viendo sus registros que lleven a resultados que pudieran servir en la mejora de la enseñanza de algunos temas de matemáticas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presentamos un avance del proyecto de tesis de doctorado que estamos realizando en el marco del doctorado en educación, línea de educación matemática, de la Universidad de Antioquia. Este estudio tiene como propósito analizar la objetivación del concepto de límite de una función, de alumnas de grado once, a través del desarrollo de su pensamiento teórico. La perspectiva histórico-cultural de la educación sirve de fundamentación teórica en esta investigación, en especial la teoría de la actividad. El camino metodológico a seguir es de orden cualitativo, desde un paradigma crítico-dialéctico, y una investigación participante. El trabajo de campo se realizará en una institución escolar pública de Medellín.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabajo está dirigido a evitar la tendencia a la ejecución inmediata que manifiestan los estudiantes para resolver problemas matemáticos. Para ello se presenta como proceder para el logro de este objetivo, mostrando ejemplos donde los alumnos tienen que detenerse forzosamente a pensar, pues se pide la búsqueda de relaciones que no exigen cálculos numéricos. Por otra parte, las situaciones que se presentan no llevan implícito los contenidos matemáticos a aplicar. Ambas situaciones están dirigidas a mostrar la necesidad de redescubrir contenidos que en algún momento han sido explicados por su maestro o profesor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La propuesta didáctica que mostramos en este curso fue desarrollada en un libro dirigido a profesores y continuada en un artículo más en profundidad (Cantoral y Montiel, 2001 y 2003) Dicha propuesta nace en una aproximación teórica de naturaleza sistémica que denominamos socioepistemología. En términos generales, la propuesta trata de una forma particular de entender a la visualización de las funciones, aunque en este escrito nos ocuparemos en particular y sólo como un ejemplo, de la construcción del polinomio de interpolación de Lagrange mediante estrategias de visualización. No abordamos aspectos del tratamiento curricular de los polinomios de Lagrange y de las concepciones que los “alumnos desarrollan en su paso por la universidad, sino que presentamos una propuesta didáctica basada en la visualización y en el desarrollo del pensamiento matemático del concepto de función. En nuestra opinión, esta propuesta favorece la evolución de las concepciones entre los alumnos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el trabajo se aborda cómo el diseño de la disciplina Matemática en las carreras de ingeniería, puede contribuir a la formación y desarrollo del pensamiento matemático, impartiendo los métodos numéricos en el momento en que se estudia cada tema, resolviendo problemas vinculados con la especialidad y con un enfoque computacional de los mismos, logrando que los estudiantes se apropien del algoritmo de estos métodos y que además conozcan algunos de los software más difundidos por su eficiencia y puedan decidir cuál de ellos escoger. Este diseño se puso en práctica experimentalmente en el curso 1995-1996 en tres de las asignaturas de la disciplina lográndose buenos resultados, el que se validó en tres cursos siguientes y se generalizó a partir del curso 2000-2001.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ante el interés creciente por álgebra lineal y las dificultades que aún continúan presentando los estudiantes en el aprendizaje de los objetos abstractos de esta disciplina, el presente trabajo pretende apoyarse en el marco de la geometría sintética para introducir los espacios analíticos R1, R2 y R3 y poder sólo después realizar las generalizaciones pertinentes a Rn. Un análisis histórico permite comprender ciertas dificultades de los estudiantes y a la vez proporciona elementos para construir secuencias de actividades con miras a introducir los conceptos de álgebra lineal de tal manera que los estudiantes perciban la necesidad del formalismo, presentando todos los sentidos posibles de los conceptos en sus diferentes modos de representación, en particular conectarlo con sus conocimientos anteriores sobre los sistemas de ecuaciones lineales y la geometría. Esta investigación se desarrollará con estudiantes de primer año universitario, cuando llevan por primera vez álgebra lineal y el concepto de espacio vectorial es enseñado formalmente como una definición muy amplia que involucra varios conceptos previos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La línea de investigación Pensamiento Numérico se encuentra dentro de las líneas de investigación establecidas en el Departamento de Didáctica de la Matemática de la Universidad de Granada, y en ella se enmarca el trabajo que se presenta a continuación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con el modelo presentado para caracterizar la corriente Pensamiento Numérico hemos hecho una aproximación a las estructuras numéricas que se estudian en Secundaria Obligatoria, tratando de ajustarnos al marco conceptual propuesto en el Currículo de Matemáticas. Como resultado de esta exploración se abren vias de reflexión muy sugerentes para pensar los viejos conceptos de la aritmética con ideas nuevas y potentes Los apuntes aquí presentados son una primera reflexión, explorada y desarrollada con cierto detalle, en algún caso, y sólo con ideas generales, en otros. Se trata de una línea de investigación emergente en nuestro país, con resultados contrastados en otras comunidades, que aquí proponemos a debate público y como materia de trabajo para profesores e investigadores interesados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este documento presentamos algunos de los resultados de un estudio que aporta evidencias de la capacidad de los alumnos de tercer grado para desarrollar pensamiento relacional y para comprender el significado del signo igual trabajando en un contexto de igualdades numéricas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo resumimos trabajos que abordan cuestiones relacionadas con el uso y desarrollo de pensamiento relacional en el contexto de la resolución de igualdades y sentencias numéricas. Nuestra intención es describir el estado de la cuestión e identificar líneas de investigación abiertas. Previamente detallamos el significado del término pensamiento relacional y señalamos otros términos más frecuentes en la literatura relacionados con este constructo.