39 resultados para Guanajuato-Descripción
em Funes: Repositorio digital de documentos en Educación Matemática - Colombia
Resumo:
El objetivo general de la investigación es describir y caracterizar el razonamiento inductivo empleado por estudiantes de tercero y cuarto de Educación Secundaria Obligatoria en la resolución de problemas que pueden ser modelizados mediante una progresión aritmética de números naturales cuyo orden sea 1 o 2. El principal aporte teórico de este trabajo es la elaboración de un modelo de razonamiento inductivo que ha permitido describir el proceso seguido por los estudiantes. El procedimiento para la identificación y descripción de las estrategias en la resolución de problemas en los que se puede utilizar el razonamiento inductivo es un aporte metodológico destacado. Los 359 estudiantes participantes resolvieron una prueba individual escrita compuesta por seis problemas. El análisis de las producciones de los estudiantes permite obtener resultados sobre los pasos de razonamiento inductivo que emplean y las estrategias que utilizan.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de 3¼ y 4¼ de ESO al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
Describimos la generalización que logran estudiantes de 3º y 4º de Educación Secundaria Obligatoria (ESO) en la resolución de problemas que involucran sucesiones lineales y cuadráticas. La descripción se centra en aspectos relativos al razonamiento inductivo y a las estrategias inductivas. Estas estrategias permiten describir el proceso seguido en términos de los elementos y los sistemas de representación correspondientes al contenido matemático.
Resumo:
Presento una primera aproximación a la descripción del razonamiento inductivo de los estudiantes de Educación Secundaria en la resolución de dos problemas matemáticos. Se analizaron las respuestas de 12 estudiantes a través de su trabajo escrito y de las entrevistas semiestructuradas que se llevaron a cabo mientras trabajaban en los problemas. Este trabajo sirve como base para la elaboración de un modelo de razonamiento inductivo que ayuda a describir el proceso que siguen los estudiantes y que, en algunos casos, les facilita la resolución. Además se analizan las representaciones que utilizan los estudiantes así como los errores y dificultades que encuentran.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de tercero y cuarto de Secundaria en la resolución del "problema de las baldosas". Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
Presentamos algunos resultados de una investigación más amplia cuyo objetivo general es describir y caracterizar el razonamiento inductivo que utilizan estudiantes de tercero y cuarto de Secundaria al resolver tareas relacionadas con sucesiones lineales y cuadráticas (Cañadas, 2007). Identificamos diferencias en el empleo de algunos de los pasos considerados para la descripción del razonamiento inductivo en la resolución de dos de los seis problemas planteados a los estudiantes. Describimos estas diferencias y las analizamos en función de las características de los problemas.
Resumo:
En este artículo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función, y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3º y 4º de Educación Secundaria Obligatoria en la resolución del problema de las baldosas. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
Pensar que existen soluciones para cerrar la brecha entre el colegio y la universidad es utópico. Sin embargo, sí tiene sentido el trabajo que se haga con respecto al problema de la brecha para conocer y acercar los ideales y las expectativas que tienen las diferentes instituciones de educación. En la Universidad de los Andes fue evidente que dicho trabajo se podría orientar en diferentes direcciones y haciendo énfasis en la institución o bien en los profesores o bien en los estudiantes. Se podían abordar temas como: diseño curricular, creencias y actitudes de los profesores y de los estudiantes, métodos de enseñanza, concepciones sobre la enseñanza y el aprendizaje, dificultades y errores de aprendizaje y otros temas. Luego de varios traspiés en la elección del tema de investigación, elegimos finalmente explorar el tema del aprendizaje y considerar a los primíparos para el estudio por ser ellos los que viven realmente el proceso de transición del colegio a la universidad. Por otra parte, nos restringimos al área de precálculo motivados en parte porque en esta materia había un mayor índice de desaprobación. Concretamente, se propuso como objetivo general describir un perfil de aprendizaje en matemáticas del estudiante de Precálculo en el momento de ingresar a la Universidad. Del objetivo anterior se derivó el problema principal de este proyecto: definir los elementos conceptuales con los cuáles articular la descripción de dicho perfil. La presentación está dividida en cuatro partes, en la primera se expone un marco conceptual que presenta los elementos con los cuales se describirá el perfil, la segunda y tercera se refieren respectivamente a la metodología de la investigación y a los resultados obtenidos y la última a las conclusiones del trabajo.
Resumo:
El proceso de indagación que se describe en este artículo se llevó a cabo con el fin de obtener información que nos ayudara en nuestro quehacer pedagógico. Exploramos la opinión de los alumnos sobre los aportes que el estudio de las matemáticas les ha brindado en su formación, y comparamos los resultados obtenidos en los distintos grados en los que se hizo la exploración. El artículo presenta una descripción del contexto en el que ocurrió la experiencia, incluye la justificación que nos condujo a la definición concreta del problema y del objetivo, expone la forma como se recolectó y organizó la información, y finaliza con algunas impresiones y reflexiones sobre los resultados obtenidos.
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3o y 4o de la ESO en la resolución del “problema de las baldosas”. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
En este trabajo se expone una visión actualizada del Análisis Didáctico como instrumento metodológico específico para la investigación en Educación Matemática. La potencialidad práctica del método se ilustra con la descripción de su aplicación en un estudio desarrollado recientemente sobre la comprensión del conocimiento matemático (Gallardo, 2004). En base a esta experiencia se destacan además las principales limitaciones e interrogantes metodológicos generados por el Análisis Didáctico junto con algunas posibilidades de mejora futura.
Resumo:
En este trabajo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
La investigación que presentamos (Cobo, 1998) analiza las interacciones que se producen entre pares de alumnos en la resolución de problemas. Aunque no utilizamos la entrevista para recoger datos orales, la técnica que mostramos tiene elementos comunes a ella. La comparación de ambas puede abrir perspectivas de debate en cuanto a las semejanzas y diferencias respecto a la situación de observación, a los papeles comunicativos de los interlocutores, a la predeterminación del tema del diálogo, a las formas de analizar los datos obtenidos, etc. En las páginas siguientes hacemos una presentación general de la investigación, centrándonos, sobre todo, en la descripción de la técnica de recogida de datos orales que utilizamos, en el contexto en el que recogemos dichos datos y en el método de análisis que proponemos. En el Anexo mostramos, a modo de ejemplo, el resumen del microanálisis de uno de los episodios del proceso de resolución de un problema.
Resumo:
En este trabajo nos centramos en la descripción de estrategias de resolución de problemas en los que el razonamiento inductivo puede ser un heurístico. La resolución de diferentes tipos de problemas puede contribuir a la adquisición de la competencia matemática. Presentamos y comparamos parte de los resultados de dos problemas propuestos en una investigación más amplia (Cañadas, 2007).