599 resultados para servers
Resumo:
Recent research has proposed Neo-Piagetian theory as a useful way of describing the cognitive development of novice programmers. Neo-Piagetian theory may also be a useful way to classify materials used in learning and assessment. If Neo-Piagetian coding of learning resources is to be useful then it is important that practitioners can learn it and apply it reliably. We describe the design of an interactive web-based tutorial for Neo-Piagetian categorization of assessment tasks. We also report an evaluation of the tutorial's effectiveness, in which twenty computer science educators participated. The average classification accuracy of the participants on each of the three Neo-Piagetian stages were 85%, 71% and 78%. Participants also rated their agreement with the expert classifications, and indicated high agreement (91%, 83% and 91% across the three Neo-Piagetian stages). Self-rated confidence in applying Neo-Piagetian theory to classifying programming questions before and after the tutorial were 29% and 75% respectively. Our key contribution is the demonstration of the feasibility of the Neo-Piagetian approach to classifying assessment materials, by demonstrating that it is learnable and can be applied reliably by a group of educators. Our tutorial is freely available as a community resource.
Resumo:
In this paper, we describe a machine-translated parallel English corpus for the NTCIR Chinese, Japanese and Korean (CJK) Wikipedia collections. This document collection is named CJK2E Wikipedia XML corpus. The corpus could be used by the information retrieval research community and knowledge sharing in Wikipedia in many ways; for example, this corpus could be used for experimentations in cross-lingual information retrieval, cross-lingual link discovery, or omni-lingual information retrieval research. Furthermore, the translated CJK articles could be used to further expand the current coverage of the English Wikipedia.
Resumo:
In this paper we propose a framework for both gradient descent image and object alignment in the Fourier domain. Our method centers upon the classical Lucas & Kanade (LK) algorithm where we represent the source and template/model in the complex 2D Fourier domain rather than in the spatial 2D domain. We refer to our approach as the Fourier LK (FLK) algorithm. The FLK formulation is advantageous when one pre-processes the source image and template/model with a bank of filters (e.g. oriented edges, Gabor, etc.) as: (i) it can handle substantial illumination variations, (ii) the inefficient pre-processing filter bank step can be subsumed within the FLK algorithm as a sparse diagonal weighting matrix, (iii) unlike traditional LK the computational cost is invariant to the number of filters and as a result far more efficient, and (iv) this approach can be extended to the inverse compositional form of the LK algorithm where nearly all steps (including Fourier transform and filter bank pre-processing) can be pre-computed leading to an extremely efficient and robust approach to gradient descent image matching. Further, these computational savings translate to non-rigid object alignment tasks that are considered extensions of the LK algorithm such as those found in Active Appearance Models (AAMs).
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. The resulting 165 heuristics for designing and evaluating real-time strategy games are presented and discussed in this paper.
Resumo:
This work investigates the accuracy and efficiency tradeoffs between centralized and collective (distributed) algorithms for (i) sampling, and (ii) n-way data analysis techniques in multidimensional stream data, such as Internet chatroom communications. Its contributions are threefold. First, we use the Kolmogorov-Smirnov goodness-of-fit test to show that statistical differences between real data obtained by collective sampling in time dimension from multiple servers and that of obtained from a single server are insignificant. Second, we show using the real data that collective data analysis of 3-way data arrays (users x keywords x time) known as high order tensors is more efficient than centralized algorithms with respect to both space and computational cost. Furthermore, we show that this gain is obtained without loss of accuracy. Third, we examine the sensitivity of collective constructions and analysis of high order data tensors to the choice of server selection and sampling window size. We construct 4-way tensors (users x keywords x time x servers) and analyze them to show the impact of server and window size selections on the results.
Resumo:
The deformation behaviour of Mg-5%AI alloys and its dependence with gain size and strain rate were investigated using nanoindentation. The grain sizes were successfully reduced below 100 nm via mechanical alloying method. It was found that the strain rate sensitivity increased with decreasing grain size. The smaller activation volumes and the plastic deformation mechanisms involving grain boundary activities are considered to contribute to the increase of strain rate sensitivity in the nanocrystalline alloys.
Resumo:
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Resumo:
It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.
Resumo:
In this paper, a comparative study of Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors is presented. MoO3 nanostructured films with three different morphologies (nanoplatelets, nanoplateletsnanowires and nano-flowers) were deposited on SiC by thermal evaporation. We compare the current-voltage characteristics and the dynamic response of these sensors as they are exposed to hydrogen gas at temperatures up to 250°C. Results indicate that the sensor based on MoO3 nanoflowers exhibited the highest sensitivity (in terms of a 5.79V voltage shift) towards 1% hydrogen; while the sensor based on MoO3 nanoplatelets showed the quickest response (t90%- 40s).
Resumo:
In this work, we present an investigation on Pt/graphene/GaN devices for hydrogen gas sensing applications. The graphene layer was deposited on GaN substrate using a chemical vapour deposition (CVD) technique and was characterised via Raman and X-ray photoelectron spectroscopy. The current-voltage (I-V) and dynamic response of the developed devices were investigated in forward and reverse bias operation at an optimum temperature of 160°C. Voltage shifts of 661.1 and 484.9 mV were recorded towards 1% hydrogen at forward and reverse constant bias current of 1 mA, respectively.
Resumo:
Titanium oxide nanotubes Schottky diodes were fabricated for hydrogen gas sensing applications. The TiO2 nanotubes were synthesized via anodization of RF sputtered titanium films on SiC substrates. Two anodization potentials of 5 V and 20 V were used. Scanning electron microscopy of the synthesized films revealed nanotubes with avarage diameters of 20 nm and 75 nm. X-ray diffraction analysis revealed that the composition of the oxide varied with the anodization potential. TiO2 (anatase) being formed preferentially at 5 V and TiO (no anatase) at 20 V. Current-voltage characteristics of the diodes were studied towards hydrogen at temperatures from 25°C to 250°C. At constant current bias of −500 μA and 250°C, the lateral voltage shifts of 800 mV and 520 mV were recorded towards 1% hydrogen for the 5 V and 20 V anodized nanotubes, respectively.
Resumo:
In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.
Resumo:
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.
Resumo:
Pt/SnO2 nanowires/SiC based metal-oxidesemiconductor (MOS) devices were fabricated and tested for their gas sensitivity towards hydrogen. Tin oxide (SnO2) nanowires were grown on SiC substrates by the vapour liquid solid growth process. The material properties of the SnO2 nanowires such as its formation and dimensions were analyzed using scanning electron microscopy (SEM). The currentvoltage (I-V) characteristics at different hydrogen concentrations are presented. The effective change in the barrier height for 0.06 and 1% hydrogen were found to be 20.78 and 131.59 meV, respectively. A voltage shift of 310 mV at 530°C for 1% hydrogen was measured.
Resumo:
This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts