444 resultados para office of president
Resumo:
The Office of Urban Management recognises that the values which characterise the SEQ region as 'subtropical' are important determinants of form in urban and regional planning. Subtropical values are those qualities on which our regional identity depends. A built environment which responds positively to these values is a critical ingredient for achieving a desirable future for the region. The Centre for Subtropical Design has undertaken this study to identify the particular set of values which characterises SEQ, and to translate theses values into design principals that will maintain and reinforce the value set. The principles not only apply to the overall balance between the natural environment and the built environment, but can be applied by local government authorities to guide local planning schemes and help shape specific built for outcomes.
Resumo:
The measurement of ICT (information and communication technology) integration is emerging as an area of research interest with such systems as Education Queensland including it in their recently released list of research priorities. Studies to trial differing integration measurement instruments have taken place within Australia in the last few years, particularly Western Australia (Trinidad, Clarkson, & Newhouse, 2004; Trinidad, Newhouse & Clarkson, 2005), Tasmania (Fitzallen 2005) and Queensland (Finger, Proctor, & Watson, 2005). This paper will add to these investigations by describing an alternate and original methodological approach which was trialled in a small-scale pilot study conducted jointly by Queensland Catholic Education Commission (QCEC) and the Centre of Learning Innovation, Queensland University of Technology (QUT) in late 2005. The methodology described is based on tasks which, through a process of profiling, can be seen to be artefacts which embody the internal and external factors enabling and constraining ICT integration.
Resumo:
In this article, we take a close look at the literacy demands of one task from the ‘Marvellous Micro-organisms Stage 3 Life and Living’ Primary Connections unit (Australian Academy of Science, 2005). One lesson from the unit, ‘Exploring Bread’, (pp 4-8) asks students to ‘use bread labels to locate ingredient information and synthesise understanding of bread ingredients’. We draw upon a framework offered by the New London Group (2000), that of linguistic, visual and spatial design, to consider in more detail three bread wrappers and from there the complex literacies that students need to interrelate to undertake the required task. Our findings are that although bread wrappers are an example of an everyday science text, their linguistic, visual and spatial designs and their interrelationship are not trivial. We conclude by reinforcing the need for teachers of science to also consider how the complex design elements of everyday science texts and their interrelated literacies are made visible through instructional practice.
Resumo:
Views on the nature and relevance of science education have changed significantly over recent decades. This has serious implications for the way in which science is taught in secondary schools, particularly with respect to teaching emerging topics such as biotechnology, which have a socio-scientific dimension and also require novel laboratory skills. It is apparent in current literature that there is a lack of adequate teacher professional development opportunities in biotechnology education and that a significant need exists for researchers to develop a carefully crafted and well supported professional development design which will positively impact on the way in which teachers engage with contemporary science. This study used a retrospective case study methodology to document the recent evolution of modern biotechnology education as part of the changing nature of science education; examine the adoption and implementation processes for biotechnology education by three secondary schools; and to propose an evidence based biotechnology professional development model for science educators. Data were gathered from documents, one-on-one interviews and focus group discussions. Analysis of these data has led to the proposal of a biotechnology professional development model which considers all of the key components of science professional development that are outlined in the literature, as well as the additional components which were articulated by the educators studied. This research is timely and pertinent to the needs of contemporary science education because of its recognition of the need for a professional development model in biotechnology education that recognizes and addresses the content knowledge, practical skills, pedagogical knowledge and curriculum management components.