118 resultados para Hedgehogs -- Molecular aspects.
Resumo:
Photosynthesis is a chemical process in which the energy of the light quanta is transformed into chemical energy. Chlorophyll (Chl) molecules play a key role in photosynthesis; they function in the antennae systems and in the photosynthetic reaction center where the primary charge separation (CS) takes place. Bio-inspired mimicry of the CS is an essential unit in dye-sensitized solar cells. Aim of this study was to design and develop electron donor-acceptor (EDA) pairs from Chls and fullerenes (C60) or carbon nanotubes (CNT). The supramolecular approach was chosen, as long synthetic sequences required by the covalent approach lead to long reaction schemes and low yields. Here, a π-interaction between soluble CNTs and Chl was used in EDA construction. Also, a beta-face selective two-point bound Chl-C60 EDA was introduced. In addition, the photophysical properties of the supramolecular EDA dyads were analyzed. In organic chemistry, nuclear magnetic resonance (NMR) spectroscopy is the most vital analytical technique in use. Multi-dimensional NMR experiments have enabled a structural analysis of complex natural products and proteins. However, in mixture analysis NMR is still facing difficulties. In many cases overlapping signals can t be resolved even with the help of multi-dimensional experiments. In this work, an NMR tool based on simple host-guest chemistry between analytes and macromolecules was developed. Diffusion ordered NMR spectroscopy (DOSY) measures the mobilities of compounds in an NMR sample. In a liquid state NMR sample, each of the analytes has a characteristic diffusion coefficient, which is proportional to the size of the analyte. With normal DOSY experiment, provided that the diffusion coefficients of the analytes differ enough, individual spectra of analytes can be extracted. When similar sized analytes differ chemically, an additive can be introduced into the sample. Since macromolecules in a liquid state NMR sample can be considered practically stationary, even faint supramolecular interaction can change the diffusion coefficient of the analyte sufficiently for a successful resolution in DOSY. In this thesis, polyvinylpyrrolidone and polyethyleneglycol enhanced DOSY NMR techniques, which enable mixture analysis of similar in size but chemically differing natural products, are introduced.
Resumo:
Breast cancer is the most common cancer in women in the western countries. Approximately two-thirds of breast cancer tumours are hormone dependent, requiring estrogens to grow. Estrogens are formed in the human body via a multistep route starting from cholesterol. The final steps in the biosynthesis include the CYP450 aromatase enzyme, converting the male hormones androgens (preferred substrate androstenedione ASD) into estrogens(estrone E1), and the 17beta-HSD1 enzyme, converting the biologically less active E1 into the active hormone 17beta-hydroxyestradiol E2. E2 is bound to the nuclear estrogen receptors causing a cascade of biochemical reactions leading to cell proliferation in normal tissue, and to tumour growth in cancer tissue. Aromatase and 17beta-HSD1 are expressed in or near the breast tumour, locally providing the tissue with estrogens. One approach in treating hormone dependent breast tumours is to block the local estrogen production by inhibiting these two enzymes. Aromatase inhibitors are already on the market in treating breast cancer, despite the lack of an experimentally solved structure. The structure of 17beta-HSD1, on the other hand, has been solved, but no commercial drugs have emerged from the drug discovery projects reported in the literature. Computer-assisted molecular modelling is an invaluable tool in modern drug design projects. Modelling techniques can be used to generate a model of the target protein and to design novel inhibitors for them even if the target protein structure is unknown. Molecular modelling has applications in predicting the activities of theoretical inhibitors and in finding possible active inhibitors from a compound database. Inhibitor binding at atomic level can also be studied with molecular modelling. To clarify the interactions between the aromatase enzyme and its substrate and inhibitors, we generated a homology model based on a mammalian CYP450 enzyme, rabbit progesterone 21-hydroxylase CYP2C5. The model was carefully validated using molecular dynamics simulations (MDS) with and without the natural substrate ASD. Binding orientation of the inhibitors was based on the hypothesis that the inhibitors coordinate to the heme iron, and were studied using MDS. The inhibitors were dietary phytoestrogens, which have been shown to reduce the risk for breast cancer. To further validate the model, the interactions of a commercial breast cancer drug were studied with MDS and ligand–protein docking. In the case of 17beta-HSD1, a 3D QSAR model was generated on the basis of MDS of an enzyme complex with active inhibitor and ligand–protein docking, employing a compound library synthesised in our laboratory. Furthermore, four pharmacophore hypotheses with and without a bound substrate or an inhibitor were developed and used in screening a commercial database of drug-like compounds. The homology model of aromatase showed stable behaviour in MDS and was capable of explaining most of the results from mutagenesis studies. We were able to identify the active site residues contributing to the inhibitor binding, and explain differences in coordination geometry corresponding to the inhibitory activity. Interactions between the inhibitors and aromatase were in agreement with the mutagenesis studies reported for aromatase. Simulations of 17beta-HSD1 with inhibitors revealed an inhibitor binding mode with hydrogen bond interactions previously not reported, and a hydrophobic pocket capable of accommodating a bulky side chain. Pharmacophore hypothesis generation, followed by virtual screening, was able to identify several compounds that can be used in lead compound generation. The visualisation of the interaction fields from the QSAR model and the pharmacophores provided us with novel ideas for inhibitor development in our drug discovery project.
Resumo:
Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.
Resumo:
The concept of an atomic decomposition was introduced by Coifman and Rochberg (1980) for weighted Bergman spaces on the unit disk. By the Riemann mapping theorem, functions in every simply connected domain in the complex plane have an atomic decomposition. However, a decomposition resulting from a conformal mapping of the unit disk tends to be very implicit and often lacks a clear connection to the geometry of the domain that it has been mapped into. The lattice of points, where the atoms of the decomposition are evaluated, usually follows the geometry of the original domain, but after mapping the domain into another this connection is easily lost and the layout of points becomes seemingly random. In the first article we construct an atomic decomposition directly on a weighted Bergman space on a class of regulated, simply connected domains. The construction uses the geometric properties of the regulated domain, but does not explicitly involve any conformal Riemann map from the unit disk. It is known that the Bergman projection is not bounded on the space L-infinity of bounded measurable functions. Taskinen (2004) introduced the locally convex spaces LV-infinity consisting of measurable and HV-infinity of analytic functions on the unit disk with the latter being a closed subspace of the former. They have the property that the Bergman projection is continuous from LV-infinity onto HV-infinity and, in some sense, the space HV-infinity is the smallest possible substitute to the space H-infinity of analytic functions. In the second article we extend the above result to a smoothly bounded strictly pseudoconvex domain. Here the related reproducing kernels are usually not known explicitly, and thus the proof of continuity of the Bergman projection is based on generalised Forelli-Rudin estimates instead of integral representations. The minimality of the space LV-infinity is shown by using peaking functions first constructed by Bell (1981). Taskinen (2003) showed that on the unit disk the space HV-infinity admits an atomic decomposition. This result is generalised in the third article by constructing an atomic decomposition for the space HV-infinity on a smoothly bounded strictly pseudoconvex domain. In this case every function can be presented as a linear combination of atoms such that the coefficient sequence belongs to a suitable Köthe co-echelon space.
Resumo:
In cardiac myocytes (heart muscle cells), coupling of electric signal known as the action potential to contraction of the heart depends crucially on calcium-induced calcium release (CICR) in a microdomain known as the dyad. During CICR, the peak number of free calcium ions (Ca) present in the dyad is small, typically estimated to be within range 1-100. Since the free Ca ions mediate CICR, noise in Ca signaling due to the small number of free calcium ions influences Excitation-Contraction (EC) coupling gain. Noise in Ca signaling is only one noise type influencing cardiac myocytes, e.g., ion channels playing a central role in action potential propagation are stochastic machines, each of which gates more or less randomly, which produces gating noise present in membrane currents. How various noise sources influence macroscopic properties of a myocyte, how noise is attenuated and taken advantage of are largely open questions. In this thesis, the impact of noise on CICR, EC coupling and, more generally, macroscopic properties of a cardiac myocyte is investigated at multiple levels of detail using mathematical models. Complementarily to the investigation of the impact of noise on CICR, computationally-efficient yet spatially-detailed models of CICR are developed. The results of this thesis show that (1) gating noise due to the high-activity mode of L-type calcium channels playing a major role in CICR may induce early after-depolarizations associated with polymorphic tachycardia, which is a frequent precursor to sudden cardiac death in heart failure patients; (2) an increased level of voltage noise typically increases action potential duration and it skews distribution of action potential durations toward long durations in cardiac myocytes; and that (3) while a small number of Ca ions mediate CICR, Excitation-Contraction coupling is robust against this noise source, partly due to the shape of ryanodine receptor protein structures present in the cardiac dyad.
Resumo:
Frictions are factors that hinder trading of securities in financial markets. Typical frictions include limited market depth, transaction costs, lack of infinite divisibility of securities, and taxes. Conventional models used in mathematical finance often gloss over these issues, which affect almost all financial markets, by arguing that the impact of frictions is negligible and, consequently, the frictionless models are valid approximations. This dissertation consists of three research papers, which are related to the study of the validity of such approximations in two distinct modeling problems. Models of price dynamics that are based on diffusion processes, i.e., continuous strong Markov processes, are widely used in the frictionless scenario. The first paper establishes that diffusion models can indeed be understood as approximations of price dynamics in markets with frictions. This is achieved by introducing an agent-based model of a financial market where finitely many agents trade a financial security, the price of which evolves according to price impacts generated by trades. It is shown that, if the number of agents is large, then under certain assumptions the price process of security, which is a pure-jump process, can be approximated by a one-dimensional diffusion process. In a slightly extended model, in which agents may exhibit herd behavior, the approximating diffusion model turns out to be a stochastic volatility model. Finally, it is shown that when agents' tendency to herd is strong, logarithmic returns in the approximating stochastic volatility model are heavy-tailed. The remaining papers are related to no-arbitrage criteria and superhedging in continuous-time option pricing models under small-transaction-cost asymptotics. Guasoni, Rásonyi, and Schachermayer have recently shown that, in such a setting, any financial security admits no arbitrage opportunities and there exist no feasible superhedging strategies for European call and put options written on it, as long as its price process is continuous and has the so-called conditional full support (CFS) property. Motivated by this result, CFS is established for certain stochastic integrals and a subclass of Brownian semistationary processes in the two papers. As a consequence, a wide range of possibly non-Markovian local and stochastic volatility models have the CFS property.
Resumo:
The aim of this thesis is to analyse the key ecumenical dialogues between Methodists and Lutherans from the perspective of Arminian soteriology and Methodist theology in general. The primary research question is defined as: "To what extent do the dialogues under analysis relate to Arminian soteriology?" By seeking an answer to this question, new knowledge is sought on the current soteriological position of the Methodist-Lutheran dialogues, the contemporary Methodist theology and the commonalities between the Lutheran and Arminian understanding of soteriology. This way the soteriological picture of the Methodist-Lutheran discussions is clarified. The dialogues under analysis were selected on the basis of versatility. Firstly, the sole world organisation level dialogue was chosen: The Church – Community of Grace. Additionally, the document World Methodist Council and the Joint Declaration on the Doctrine of Justification is analysed as a supporting document. Secondly, a document concerning the discussions between two main-line churches in the United States of America was selected: Confessing Our Faith Together. Thirdly, two dialogues between non-main-line Methodist churches and main-line Lutheran national churches in Europe were chosen: Fellowship of Grace from Norway and Kristuksesta osalliset from Finland. The theoretical approach to the research conducted in this thesis is systematic analysis. The Remonstrant articles of Arminian soteriology are utilised as an analysis tool to examine the soteriological positions of the dialogues. New knowledge is sought by analysing the stances of the dialogues concerning the doctrines of partial depravity, conditional election, universal atonement, resistible grace and conditional perseverance of saints. This way information is also provided for approaching the Calvinist-Arminian controversy from new perspectives. The results of this thesis show that the current soteriological position of the Methodist-Lutheran dialogues is closer to Arminianism than Calvinism. The dialogues relate to Arminian soteriology especially concerning the doctrines of universal atonement, resistible grace and conditional perseverance of saints. The commonalities between the Lutheran and Arminian understanding of soteriology exist mainly in these three doctrines as they are uniformly favoured in the dialogues. The most discussed area of soteriology is human depravity, in which the largest diversity of stances occurs as well. On the other hand, divine election is the least discussed topic. The overall perspective, which the results of the analysis provide, indicates that the Lutherans could approach the Calvinist churches together with the Methodists with a wider theological perspective and understanding when the soteriological issues are considered as principal. Human depravity is discovered as the area of soteriology which requires most work in future ecumenical dialogues. However, the detected Lutheran hybrid notion on depravity (a Calvinist-Arminian mixture) appears to provide a useful new perspective for Calvinist-Arminian ecumenism and offers potentially fruitful considerations to future ecumenical dialogues.
Resumo:
How did Søren Kierkegaard (1813 1855) situate the human subject into historical and social actuality? How did he take into consideration his own situatedness? As key for understanding these questions the research takes the ideal of living poetically that Kierkegaard outlined in his dissertation. In The Concept of Irony (1841) Kierkegaard took up this ideal of the Romantic ironists and made it into an ethical-religious ideal. For him the ideal of living poetically came to mean 1) becoming brought up by God, while 2) assuming ethical-religiously one s role and place in the historical actuality. Through an exegesis of Kierkegaard s texts from 1843 to 1851 it is shown how this ideal governed Kierkegaard s thought and action throughout his work. The analysis of Kierkegaard s ideal of living poetically not only a) shows how the Kierkegaardian subject is situated in its historical context. It also b) sheds light on Kierkegaard s social and political thought, c) helps to understand Kierkegaard s character as a religious thinker, and d) pits his ethical-religious orientation in life against its scientific and commonsense alternatives. The research evaluates the rationality of the way of life championed by Kierkegaard by comparing it with ways of life dominated by reflection and reasoning. It uses Kierkegaard s ideal of living poetically in trying to understand the tensions between religious and unreligious ways of life.
Resumo:
The circulatory system consists of two vessel types, which act in concert but significantly differ from each other in several structural and functional aspects as well as in mechanisms governing their development. The blood vasculature transports oxygen, nutrients and cells to tissues whereas the lymphatic vessels collect extravasated fluid, macromolecules and cells of the immune system and return them back to the blood circulation. Understanding the molecular mechanisms behind the developmental and functional regulation of the lymphatic system long lagged behind that of the blood vasculature. Identification of several markers specific for the lymphatic endothelium, and the discovery of key factors controlling the development and function of the lymphatic vessels have greatly facilitated research in lymphatic biology over the past few years. Recognition of the crucial importance of lymphatic vessels in certain pathological conditions, most importantly in tumor metastasis, lymphedema and inflammation, has increased interest in this vessel type, for so long overshadowed by its blood vascular cousin. VEGF-C (Vascular Endothelial Growth Factor C) and its receptor VEGFR-3 are essential for the development and maintenance of embryonic lymphatic vasculature. Furthermore, VEGF-C has been shown to be upregulated in many tumors and its expression found to positively correlate with lymphatic metastasis. Mutations in the transcription factor FOXC2 result in lymphedema-distichiasis (LD), which suggests a role for FOXC2 in the regulation of lymphatic development or function. This study was undertaken to obtain more information about the role of the VEGF-C/VEGFR-3 pathway and FOXC2 in regulating lymphatic development, growth, function and survival in physiological as well as in pathological conditions. We found that the silk-like carboxyterminal propeptide is not necessary for the lymphangiogenic activity of VEGF-C, but enhances it, and that the aminoterminal propeptide mediates binding of VEGF-C to the neuropilin-2 coreceptor, which we suggest to be involved in VEGF-C signalling via VEGFR-3. Furthermore, we found that overexpression of VEGF-C increases tumor lymphangiogenesis and intralymphatic tumor growth, both of which could be inhibited by a soluble form of VEGFR-3. These results suggest that blocking VEGFR-3 signalling could be used for prevention of lymphatic tumor metastasis. This might prove to be a safe treatment method for human cancer patients, since inhibition of VEGFR-3 activity had no effect on the normal lymphatic vasculature in adult mice, though it did lead to regression of lymphatic vessels in the postnatal period. Interestingly, in contrast to VEGF-C, which induces lymphangiogenesis already during embryonic development, we found that the related VEGF-D promotes lymphatic vessel growth only after birth. These results suggest, that the lymphatic vasculature undergoes postnatal maturation, which renders it independent of ligand induced VEGFR-3 signalling for survival but responsive to VEGF-D for growth. Finally, we show that FOXC2 is necessary for the later stages of lymphatic development by regulating the morphogenesis of lymphatic valves, as well as interactions of the lymphatic endothelium with vascular mural cells, in which it cooperates with VEGFR-3. Furthermore, our study indicates that the absence of lymphatic valves, abnormal association of lymphatic capillaries with mural cells and an increased amount of basement membrane underlie the pathogenesis of LD. These findings have given new insight into the mechanisms of normal lymphatic development, as well as into the pathogenesis of diseases involving the lymphatic vasculature. They also reveal new therapeutic targets for the prevention and treatment of tumor metastasis and lymphatic vascular failure in certain forms of lymphedema. Several interesting questions were posed that still need to be addressed. Most importantly, the mechanism of VEGF-C promoted tumor metastasis and the molecular nature of the postnatal lymphatic vessel maturation remain to be elucidated.
Resumo:
Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.