184 resultados para Layer Thickness

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of A] layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. 'Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3/Al interface is minimal when Al2O3 layer and Al layer have the same thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the influence of thickness of p-GaN layer on the performance of p-i-n structure GaN ultraviolet photodetector. Through the simulation calculation, it was found that both the quantum efficiency and dark current of device decrease when employing thicker p-GaN layer, while both the quantum efficiency and dark current increase with decreasing thickness of p-GaN layer. It is suggested that the Schottky contact junction between the metal and p-GaN may be responsible for the incompatible effect. We has to make a suitable choice of the thickness of p-GaN in the device design according to the application requirement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the dependence of current-voltage characteristics of AlAs/In0.53Ga0.47As/InAs resonant tunnelling diodes (RTDs) on spacer layer thickness. It finds that the peak and the valley current density J in the negative differential resistance (NDR) region depends strongly on the thickness of the spacer layer. The measured peak to valley current ratio of RTDs studied here is shown to improve while the current density through RTDs decreases with increasing spacer layer thickness below a critical value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of thickness of the high-temperature (HT) AlN buffer layer on the properties of GaN grown on Si(111) has been investigated. Optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffraction (XRD) are employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness of HT AlN buffer layer, and the optimized thickness of the HT AlN buffer layer is about 110 nm. Together with the low-temperature (LT) AlN interlayer, high-quality GaN epilayer with low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of low-temperature AlN buffer layer thickness on GaN epilayer was investigated by triple-axis X-ray diffraction (XRD) and photoluminescence measurements. A method was proposed to measure the screw and edge dislocation densities by XRD. It was found that the buffer layer thickness was a key parameter to affect the quality of GaN epilayer and an appropriate thickness resulted in the best structural and optical properties except the lateral grain size. After the thickness exceeding the appropriate value, the compressive stress in the epilayer decreased as the thickness increased, which led to the redshift of the near-band edge luminescence. The experimental results showed the buffer layer thickness had more influence on edge dislocation than screw type and the former was perhaps the main source of the yellow band. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thickness effect of immiscible alloy InAlAs as matrix layer on the morphology of InAs nanostructure grown on InAlAs/InP (0 0 1) by solid-source molecular-beam epitaxy has been studied. Experiments demonstrate that InAs nanostructure grown on thin InAlAs matrix layer forms randomly distributed quantum dot, whereas, grown on thick InAlAs matrix layer forms one-dimension ordered mixture of quantum wire and quantum dot. This drastic modification in the nanostructure morphology is attributed to the generation of composition modulation in the immiscible InAlAs alloy with the increase of the layer thickness. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of annealing time and Si cap layer thickness: on the thermal stability of the Si/SiGe/Si heterostructures deposited by disilane and solid-Ge molecule beam epitaxy were investigated. It is found that in the same strain state of the SiGe layers the annealing time decreases with increasing Si cap layer thickness. This effect is analyzed by a force-balance theory and an equation has been obtained to characterize the relation between the annealing time and the Si cap layer thickness. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dependence of the inversion-layer thickness on the film thickness in thin-film SOI structure is analyzed theoretically by using computer simulation. A new concept and parameter, the critical thickness of thin film all-bulk inversion, is introduced for the design of thin-film MOS/SOI devices. It is necessary to select the film thickness T(s1) close to the all-bulk strong inversion critical thickness in order to get high-speed and high-power operation of ultra-thin film MOS/SOI devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of annealing time and Si cap layer thickness: on the thermal stability of the Si/SiGe/Si heterostructures deposited by disilane and solid-Ge molecule beam epitaxy were investigated. It is found that in the same strain state of the SiGe layers the annealing time decreases with increasing Si cap layer thickness. This effect is analyzed by a force-balance theory and an equation has been obtained to characterize the relation between the annealing time and the Si cap layer thickness. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of crystallization rate on the epitaxial interface layer thickness of high-density polyethylene (HDPE) in the epitaxial system with oriented isotactic polypropylene (iPP) has been investigated by electron microscopy. The results of bright-field

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interface layer plays an important role in stress transfer in composite structures. However, many interface layer properties such as the modulus, thickness, and uniformity are difficult to determine. The model developed in this article links the influence of the interface layer on the normal stress distribution along the layer thickness with the layer surface morphology before bonding. By doing so, a new method of determining the interfacial parameter(s) is suggested. The effects of the layer thickness and the surface roughness before bonding on the normal stress distribution and its depth profile are also discussed. For ideal interface case with no interfacial shear stress, the normal stress distribution pattern can only be monotonically decreased from the interface. Due to the presence of interfacial shear stress, the normal stress distribution is much more complex, and varies dramatically with changes in the properties of the interface layer, or the dimensions of the bonding layers. The consequence of this dramatic stress field change, such as the shift of the maximum stress from the interface is also addressed. The size-dependent stress distribution in the thickness direction due to the interface layer effect is presented. When the interfacial shear stress is reduced to zero, the model presented in this article is also demonstrated to have the same normal stress distribution as obtained by the previous model, which does not consider the interface layer effect.