137 resultados para VAPOR density


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the growth of high quality and crack-free GaN film on Si (111) substrate using Al0.2Ga0.8N/AlN stacked interlayers. Compared with the previously used single AlN interlayer, the AlGaN/AlN stacked interlayers can more effectively reduce the tensile stress inside the GaN layer. The cross-sectional TEM image reveals the bending and annihilation of threading dislocations (TDs) in the overgrown GaN film which leads to a decrease of TD density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN nanostructures with and without GaN capping layers were grown by using metal-organic chemical vapor deposition. Morphological, structural, and optical properties were systematically studied by using atomic force microscopy, X-ray diffraction (XRD) and temperature-dependent photoluminescence (PL). XRD results show that an InGaN structure is formed for the sample with a GaN capping layer, which will reduce the quality and the IR PL emission of the InN. The lower emission peak at similar to 0.7 eV was theoretically fitted and assigned as the band edge emission of InN. Temperature-dependent PL shows a good quantum efficiency for the sample without a GaN capping layers; this corresponds to a lower density of dislocations and a small activation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flat, fully strain-relaxed Si0.72Ge0.28 thin film was grown on Si (1 0 0) substrate with a combination of thin low-temperature (LT) Ge and LT-Si0.72Ge0.28 buffer layers by ultrahigh vacuum chemical vapor deposition. The strain relaxation ratio in the Si0.72Ge0.28 film was enhanced up to 99% with the assistance of three-dimensional Ge islands and point defects introduced in the layers, which furthermore facilitated an ultra-low threading dislocation density of 5 x 10(4) cm (2) for the top SiGe film. More interestingly, no cross-hatch pattern was observed on the SiGe surface and the surface root-mean-square roughness was less than 2 nm. The temperature for the growth of LT-Ge layer was optimized to be 300 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor (HEMT) hetero-structures were grown on the 2-in Si (1 1 1) substrate using metal-organic chemical vapor deposition (MOCVD). Low-temperature (LT) AlN layers were inserted to relieve the tension stress during the growth of GaN epilayers. The grown AlGaN/GaN HEMT samples exhibited a maximum crack-free area of 8 mm x 5 mm, XRD GaN (0 0 0 2) full-width at half-maximum (FWHM) of 661 arcsec and surface roughness of 0.377 nm. The device with a gate length of 1.4 mu m and a gate width of 60 mu m demonstrated maximum drain current density of 304 mA/mm, transconductance of 124 mS/mm and reverse gate leakage current of 0.76 mu A/mm at the gate voltage of -10 V. (C) 2008 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature (LT) AlN interlayers were used to effectively reduce the tension stress and micro-cracks on the surface of the GaN epilayer grown on Si (111) substrate. Optical Microscopy (OM), Atomic Force Microscopy (AFM), Surface Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). In addition, wet etching method was used to evaluate the defect of the GaN epilayer. The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness, interlayer number and growth temperature of the LT AlN interlayer. With the optimized LT AlN interlayer structures, high quality GaN epilayers with a low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in semi-insulating (SI) 6H-SiC substrate by metal-organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Omega/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 pm x 2 nun demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 9 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Very low threshold current density InGaAs/ GaAs quantum well laser diodes grown by molecular beam epitaxy on InGaAs metamorphic buffers are reported. The lasing wavelength of the ridge waveguide laser diode with cavity length of 1200 mm is centred at 1337.2 nm; the threshold current density is 205 A/cm(2) at room temperature under continuous-wave operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated microcrystalline silicon (mu c-Si:H) thin films were prepared by high-pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality mu c-Si:H films have been achieved with a high deposition rate of 7.8 angstrom/s at a high pressure. The V-oc of 560 mV and the FF of 0.70 have been achieved for a single-junction mu c-Si:H p-i-n solar cell at a deposition rate of 7.8 angstrom/s.