230 resultados para 311-U1326D
Growth and characterization of GaInNAs by molecular beam epitaxy using a nitrogen irradiation method
Resumo:
We propose an innovative technique, making use of the In segregation effect, referred as the N irradiation method, to enhance In-N bonding and extend the emission wavelength of GaInNAs quantum wells (QWs). After the formation of a complete In floating layer, the growth is interrupted and N irradiation is initiated. The majority of N atoms are forced to bond with In atoms and their incorporation is regulated independently by the N exposure time and the As pressure. The effect of the N exposure time and As pressure on the N incorporation and the optical quality of GaInNAs QWs were investigated. Anomalous photoluminescence (PL) wavelength red shifts after rapid thermal annealing (RTA) were observed in the N-irradiated samples, whereas a normal GaInNAs sample revealed a blue shift. This method provides an alternative way to extend the emission wavelength of GaInNAs QWs with decent optical quality. We demonstrate light emission at 1546 nm from an 11-nm-thick QW, using this method and the PL intensity is similar to that of a 7-nm-thick GaInNAs QW grown at a reduced rate. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The structural and surface properties of AlInGaN quaternary films grown at different temperatures on GaN templates by metalorganic chemical vapor deposition are investigated. Formation of two quaternary layers is confirmed and the difference between them is pronounced when the growth temperature is increased. The surface is featured with V-shaped pits and cracks, whose characteristics are further found to be strongly dependent on the growth temperature of AlInGaN layers. The two-layer structure is interpreted by taking into account of the strain status in AlInGaN layers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The growth direction of ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD) is modulated by pretreatment of (001) SMO3 (STO) substrates. ZnO films show a-oriented smooth surface with epitaxial relationship of < 001 > ZnO//< 110 > STO on as-received SfO, and c-axis columnar growth with < 010 > ZnO//< 110 > STO on etched STO, respectively. The orientation alteration of ZnO films is supposed to be caused by the change of STO surface polarity. In addition, the c-ZnO films exhibit an enhanced photoluminescence (PL) intensity due to the improved crystal quality, while the blueshift of PL peak is attributed to the smaller tensile strain. These results show that high quality c-ZnO, which is essential for electronic and optoelectronic device applications, can be grown on (001) SfO by MOCVD. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Er photoluminescence (Er PL) and dangling bonds (DBs) of annealed Er-doped hydrogenated amorphous silicon nitride (a-SiN:H(Er)) with various concentrations of nitrogen are studied in the temperature range 62-300 K. Post-annealing process is employed to change the DBs density of a-SiN:H(Er). PL spectra, DBs density and H, N concentrations are measured. The intensity of Er PL displays complicated relation with Si DBs density within the annealing temperature range 200-500 degreesC. The intensity of Er PL first increases with decreasing density of Si dangling bonds owing to the structural relaxation up to 250 degreesC, and continues to increase up to 350 degreesC even though the density of Si DBs increases due to the improvement of symmetry environment of Er3+. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Passive mode locking of a diode-pumped Nd:GdVO4 laser was demonstrated using In0.25Ga0.75As as saturable absorber as well as output coupler. The pulse width was measured to be about 16 ps with a repetition rate of 146 MHz. The average output power was 120 mW with pump power of 6 W. To our knowledge, this is the first demonstration on a passively mode-locked Nd:GdVO4 laser by using an In0.25Ga0.75As output coupler. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
A low-temperature Si0.8Ge0.2 (LT-Si0.8Ge0.2) interlayer was grown at 500 degrees C to improve the relaxed Si0.8Ge0.2 surface and reduce the dislocation density in it, which was confirmed by the change of reflective high-energy electron diffraction (RHEED) pattern from spotty to streaky and etch pits counts. For the same extent of strain; the threading dislocation density was reduced from 8 x 10(7) cm(-2) in the latter to 2 x 10(6) cm(-2) in the former. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have made a normal incidence high infrared absorption efficiency AlAs/Al0.55Ga0.45As multiple-quantum-well structure grown on (211) GaAs substrates by molecular beam epitaxy (MBE). A strong infrared absorption signal at 11.6 mu m due to the transition of the ground state to the first excited state, and a small signal at 6.8 mu m due to the transition from the ground state to continuum. were observed. A 45 degrees tilted incidence measurement was also performed on the same sample for the comparison with a normal incidence measurement. Both measurements provide important information about the quantum well absorption efficiency. Efficiencies which evaluate the absorption of electric components perpendicular and parallel to the well plane are eta(perpendicular to) = 25% and eta(parallel to) = 88%, respectively. The total efficiency is then deduced to be eta = 91%. It is apparent that the efficiency eta(parallel to) dominates the total quantum efficiency eta Because an electron in the (211) AlAs well has a small effective mass (m(zx)* or m(zy)*), the normal incidence absorption coefficient is expected to be higher:than that grown on (511) and (311) substrates. Thus, in the present study, we use the (211) substrate to fabricate QWIP. The experimental results indicate the potential of these novel structures for use as normal incidence infrared photodetectors.
Alignment of misfit dislocations in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As/InP heterostructure
Resumo:
It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As system grown on the (001) InP substrate that misfit dislocation lines deviate [110] directions at an angle with its value depending on the gallium content. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on misfit dislocations in the interface between the III-V ternary compounds. (C) 1998 American Institute of Physics.
Resumo:
The structural and surface properties of AlInGaN quaternary films grown at different temperatures on GaN templates by metalorganic chemical vapor deposition are investigated. Formation of two quaternary layers is confirmed and the difference between them is pronounced when the growth temperature is increased. The surface is featured with V-shaped pits and cracks, whose characteristics are further found to be strongly dependent on the growth temperature of AlInGaN layers. The two-layer structure is interpreted by taking into account of the strain status in AlInGaN layers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An ultra-compact silicon-on-insulator based photonic crystal corner mirror is designed and optimized. A sample is then successfully fabricated with extra losses 1.1 +/- 0.4dB for transverse-electronic (M) polarization for wavelength range of 1510-1630nm.
Resumo:
化石燃料的燃烧是百余年来大气中二氧化碳(CO2)浓度增加的主要原因。CO2的收集和处置则是抑制这一趋势的有效途径。本文通过对现有收集利用和处置技术的分析,认为火电厂是收集CO2的重点考虑对象;CO2用于三次采油及天然气回收在技术上和经济上比较可行;蓄水层储气前景广阔值得研究;深海处置有待进一步探索;CO2用于置换开采天然气水合物也是很有前景的方案。
The burning of fossil fuel is the primary cause to have the concentration of carbon dioxide(CO2) in atmosphere increased during the past more than a hundred of years,and the capture and disposal of CO2 is an effective method to control its rising tendency.By analysis of the current capture and disposal technologies of CO2,it is concluded that firepower plants are the key targets to capture CO2.The paper also puts forth that tertiary oil recovery and natural gas recovery with CO2 are feasible both technologically and economically;storage of CO2 in saline aquifer is a method of nice foreground and deserves to be researched; disposal of CO2 in deep seafloor will be further investigated;and displacement of gas hydrate with CO2 is a tempting programme also.