148 resultados para 13077-001
Resumo:
InAs self-organized quantum dots in InAlAs matrix lattice-matched to exactly oriented (001) InP substrates were grown by solid source molecular beam epitaxy (MBE) using the Stranski-Krastanow mode. Preliminary characterizations have been performed using photoluminescence and transmission electron microscopy. The geometrical arrangement of the quantum dots is found to be strongly dependent on the amount of coverage. At low deposition thickness. InAs QDs are arranged in chains along [1(1) over bar0$] directions. Luminescence from the quantum dots and the wetting layer consisting of quantum wells with well widths of 1, 2, and 3 monolayers is observed. (C) 1998 American Institute of Physics.
Resumo:
Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. The full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 mu m thick was 72 arcmin. and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. Al room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm.
Resumo:
Wurtzite GaN films have been grown on (001) Si substrates using gamma-Al2O3 as an intermediate layer by low pressure (similar to 76 Torr) metalorganic chemical vapor deposition. Reflection high energy electron diffraction and double crystal x-ray diffraction measurements revealed that the thin gamma-Al2O3 layer of "compliant" character was an effective intermediate layer for the GaN film grown epitaxially on Si. The narrowest linewidth of the x-ray rocking curve for (0002) diffraction of the 1.3 mu m GaN sample was 54 arcmin. The orientation relationship of GaN/gamma-Al2O3/Si was (0001) GaN parallel to(001) gamma-Al2O3 parallel to(001) Si, [11-20] GaN parallel to[110] gamma-Al2O3 parallel to[110] Si. The photoluminescence measurement for GaN at room temperature exhibited a near band-edge peak of 365 nm (3.4 eV). (C) 1998 American Institute of Physics.
Resumo:
The self-organized InAs/In0.52Al0.48As nanostructure were grown on InP (001) using molecular beam epitaxy (MBE). The nanostructure has been studied using transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The edge dislocations with the Burgers vector b = ([001]/2) and extending along the [$(110) over bar $] direction are observed. The results show that in the region near an edge dislocation, no InAs wires were formed, while in the regions free of dislocation, wire-like nanostructures were formed. The mechanisms for the formation of the [001]/2 edge dislocations were discussed.
Resumo:
ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 degrees C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 degrees C. The ZnTe epilayer grown at 360 degrees C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.
Resumo:
ZnTe epilayers were grown on GaAs(0 0 1) substrates by molecular beam epitaxy (MBE) at different VI/II beam equivalent pressure (BEP) ratios (R-VI/II) in a wide range of 0.96-11 with constant Zn flux. Based on in situ reflection high-energy electron diffraction (RHEED) observation, two-dimensional (2D) growth mode can be formed by increasing the R-VI/II to 2.8. The Te/Zn pressure ratios lower than 4.0 correspond to Zn-rich growth state, while the ratios over 6.4 correspond to Te-rich one. The Zn sticking coefficient at various VI/II ratios are derived by the growth rate measurement. The ZnTe epilayer grown at a R-VI/II of 6.4 displays the narrowest full-width at half-maximum (FWHM) of double-crystal X-ray rocking curve (DCXRC) for (0 0 4) reflection. Atomic force microscopy (AFM) characterization shows that the grain size enlarges drastically with the R-VI/II. The surface root-mean-square (RMS) roughness decreases firstly, attains a minimum of 1.14 nm at a R-VI/II of 4.0 and then increases at higher ratios. It is suggested that the most suitable R-VI/II be controlled between 4.0 and 6.4 in order to grow high-quality ZnTe epitaxial thin films.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
Resumo:
The surface roughness of polished InP (001) wafers were examined by x-ray reflectivity and crystal truncation rod (CTR) measurements. The root-mean-square roughness and the lateral correlation scale were obtained by both methods. The scattering intensities in the scans transverse to the specular reflection rod were found to contain two components. A simple surface model of surface faceting is proposed to explain the experimental data. The sensitivities of the two methods to the surface structure and the role of the resolution functions in the CTR measurements are discussed.
Resumo:
HF etching followed by relatively low temperature (almost-equal-to 600-degrees-C) pretreatment is shown to provide a suitable substrate for the heteroepitaxial growth of GaAs on Si(100) by CBE using TEGa and AsH3 as sources. Rutherford backscattering (RBS), photoluminescence (PL), transmission electron microscopy (TEM), and Raman measurements show the low-defect nature of the GaAs epilayer.
Resumo:
Films of GaN have been grown using a modified MBE technique in which the active nitrogen is supplied from an RF plasma source. Wurtzite films grown on (001) oriented GaAs substrates show highly defective, ordered polycrystalline growth with a columnar structure, the (0001) planes of the layers being parallel to the (001) planes of the GaAs substrate. Films grown using a coincident As flux, however, have a single crystal zinc-blende growth mode. They have better structural and optical properties. To improve the properties of the wurtzite films we have studied the growth of such films on (111) oriented GaAs and GaP substrates. The improved structural properties of such films, assessed using X-ray and TEM method, correlate with better low-temperature FL.
Resumo:
We present photoelectron spectroscopic and low energy electron diffraction measurements of water adsorption on flat Si samples of the orientations (001), (115), (113), (5,5,12) and (112) as well as on curved samples covering continuously the ranges (001)-(117) and (113)-(5,5,12)-(112). On all orientations, water adsorption is dissociative (OH and H) and non-destructive. On Si(001) the sticking coefficient S and the saturation coverage Theta(sat) are largest. On Si(001) and for small miscuts in the [110]-azimuth, S is constant nearly up to saturation which proves that the kinetics involves a weakly bound mobile precursor state. For (001)-vicinals with high miscut angles (9-13 degrees), the step structure breaks down, the precursor mobility is affected and the adsorption kinetics changed. On (115), (113), (5,5,12) and (112), the values of S and Theta(sat) are smaller which indicates that not all sites are able to dissociate and bind water. For (113) the shape of the adsorption curves Theta versus exposure shows the existence of two adsorption processes, one with mobile precursor kinetics and one with Langmuir-like kinetics. On (5,5,12), two processes with mobile precursor kinetics are observed which are ascribed to adsorption on different surface regions within the large surface unit cell. From the corresponding values of S and Theta(sat), data for structure models are deduced. (C) 1997 Elsevier Science B.V.
Resumo:
A dissociated screw dislocation parallel to the interface was found in the epitaxial layer of the Ge0.17Si0.83 Si(001) system. It is shown that this dissociated screw dislocation which consists of two 30 degrees partials can relieve misfit strain energy, and the relieved misfit energy is proportional to the width of the stacking fault between the two partials.
Resumo:
We report a detailed analysis of optical properties of single submonolayer InAs structures grown on GaAs (001) matrix. It is shown that the formation of InAs dots with 1 monolayer (ML) height leads to localization of exciton under certain submonolayer InAs coverage, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures.
Resumo:
Optical properties of single submonolayer InAs structures grown on GaAs (001) matrix are systematically investigated by means of photoluminescence acid time-resolved photoluminescence, It is shown that the formation of InAs dots with 1 ML height leads to localization of excitons under certain submonolayer InAs coverages, which play a key role in the highly improved luminescence efficiency of the submonolayer InAs/GaAs structures. (C) 1995 American Institute of Physics.