828 resultados para EPITAXY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A very low CW threshold current of 1.65 mA at room temperature was obtained for an uncoated buried-heterostructure strained layer multiquantum well InGaAs-GaAs laser fabricated using hybrid molecular beam epitaxy and liquid phase epitaxy crystal growth technique. External differential quantum efficiency as high as 44.6% (0.53 mW/mA) and output power of more than 30 mW per facet were achieved in the same laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the recently developed exact effective-mass envelope-function theory, the electronic structures of InAs/GaAs strained superlattices grown on GaAs (100) oriented substrates are studied. The electron and hole subband structures, distribution of electrons and holes along the growth direction, optical transition matrix elements, exciton states, and absorption spectra are calculated. In our calculations, the effects due to the different effective masses of electrons and holes in different materials and the strain are included. Our theoretical results are in agreement with the available experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

808 nm high-power laser diodes are gown by MBE. In the laser structure, the combination of Si-doped GRIN (graded-index) region adjacent to n-AlGaAs cladding layer with reduced Be doping concentration near the active region has been used to diminish Be diffusion and oxygen incorporation. As compared with the laser structure which has undoped GRIN region and uniform doping concentration for Si and Be, respectively, in the cladding layers, the slope efficiency has increased by about 8%. Typical threshold current density of 300 A/cm(2) and the minimum threshold current density of 220 A/cm(2) for lasers with 500 mu m cavity length are obtained. A high slope efficiency of 1.3 W/A for coated lasers with 1000 mu m cavity length is also demonstrated, Recorded CW output power at room temperature has reached 2.3 W.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InxGa1-xAs/InP (0.39 less than or equal to x less than or equal to 0.68) strained-layer quantum wells having 20 wells with thickness of 50 Angstrom in a P-i-N configuration were grown by gas source molecular beam epitaxy (GSMBE). High-resolution X-ray diffraction rocking curves show the presence of up to seven orders of sharp and intense satellite reflection, indicative of the structural perfection of the samples. Low-temperature photoluminescence and low-temperature absorption spectra were used to determine the exciton transition energies as a function of strain. Good agreement is achieved between exciton transition energies obtained experimentally at low temperature with those calculated using the deformation potential theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality compressively strained In0.63Ga0.37As/InP quantum wells with different well widths (1-11 nm) have been grown coherently on InP substrates using a home-made gas source molecular beam epitaxy (GSMBE) system. The indium composition in the wells of the sample was determined by means of high-resolution X-ray diffraction and its computer simulation. it is found that the exciton transition energies determined by photoluminescence (PL) at 10 K are in good agreement with those calculated using a deformation potential model. Sharp and intense peaks for each well can be well resolved in the 10 K PL spectra. For wells narrower than 4 nm, the line width of the PL peaks are smaller than the theoretical values of the line-width broadening due to 1 hit interface fluctuation, showing that the interface fluctuation of our sample is within 1 ML. For wells of 7 and 9 nm, the PL peak widths are as low as 4.5 meV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

InAs thin films with good characteristics were grown on GaAs (0 0 1) substrates by molecular beam epitaxy. Cross-sectional transmission electron microscopy indicated that most of the threading dislocations formed by the interaction of misfit dislocations are annihilated above a small thickness. The high electron mobility and small temperature dependence of InAs epilayers are useful for magnetic sensors which is demonstrated by the properties of Hall effect devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-temperature photoluminescence and excitation spectra from InAs monolayer quantum structures, grown on (311)A, (311)B, and (100) GaAs substrates, are investigated, The structures were grown simultaneously by conventional molecular-beam epitaxy (MBE), The experimental results show that the quality of InAs monolayer on (311)B GaAs substrate is obviously better in crystal quality than those on the two other oriented GaAs substrates. In addition, the transition peaks of the InAs layer grown on (311) GaAs substrates shift to higher energy with respect to that from the InAs layer grown on (100) GaAs substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystallographic tilt of the epilayers with respect to their substrates has been observed in many heteroepitaxial systems. Many models have been proposed to explain this phenomenon, but none of them is suitable for the large mismatched system, such as GaAs/Si. Here a new model is proposed for GaAs/Si epilayers, which can also be used in other large mismatched systems. The magnitude of the tilt calculated from this model coincide well with the experimental results. Especially, this model can correctly predict the tilt direction of the GaAs/Si epilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influences of arsenic interstitials and dislocations on the lattice parameters of undoped semi-insulating (SI) GaAs single crystals were analyzed. It was shown that the dislocations in such crystals serve as effective gettering sites for arsenic interstitials due to the deformation energy of dislocations. The average excess arsenic in GaAs epilayers grown by molecular-beam epitaxy (MBE) at low temperatures (LT) is about 1%, and the lattice parameters of these epilayers are larger than those of liquid-encapsulated Czochralski-grown (LEG) SI-GaAs by about 0.1%. The atomic ratio, [As]/([Ga] + [As]), in SI-GaAs grown by low-pressure (LP) LEC is the nearest to the strict stoichiometry compared with those grown by high-pressure (HP) LEC and vertical gradient freeze (VGF). After multiple wafer annealing (MWA), the crystals grown by HPLEC become closer to be strictly stoichiometric.