195 resultados para rapid-thermal annealing
Resumo:
We have investigated the annealing and activation of silicon implanted in both as-grown Fe-doped semi-insulating (SI) InP substrate and undoped SI InP substrate obtained by annealing high purity conductive InP wafer (wafer-annealed). Si implantations were performed at an energy of 500 keV and a dose of 1 X 10(15) cm(-2). Following the implantations, rapid thermal annealing (RTA) cycles were carried out for 30 s at different temperatures. The results of Raman measurements show that for 700degreesC/30s RTA, the two Si-implanted SI InP substrates have acquired a high degree of lattice recovery and electrical activation. However, further Hall measurements indicate that the carrier concentration of the wafer-annealed SI InP substrate is about three times higher than that of the as-grown Fe-doped SI InP substrate. The difference can be ascribed to the low Fe concentration of the wafer-annealed SI InP substrate.These experimental data imply that the use of the wafer-annealed SI InP substrate can be conducive to the improvement of InP-based device performances. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.
Resumo:
The Schottky behaviour of Ni/Au contact on n-GaN was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that high quality Schottky contact with a barrier height and ideality factor of 0.86 +/- 0.02 eV and 1.19 +/- 0.02 eV, respectively, can be obtained under 5 min annealing at 600degreesC in N-2 ambience.
Resumo:
Post-growth rapid thermal annealing has been performed with In(Ga)As quantum dots (QDs) at different strain statuses. It is confirmed that the strain-enhanced interdiffusion decreases the inhomogeneous size distribution. The preferential lateral interdiffusion of QDs during annealing was observed. we attribute it to the naturally anisotropic strain distribution in/around the dots and the saturation of strain difference between the base boundary and the top of the dots. There exist strain-enhanced mechanism and vacancy diffusion enhanced mechanism during the annealing. As to which one dominates the QD interdiffusion depends on the thickness of capping layer and the annealing temperature. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A novel pulsed rapid thermal processing (PRTP) method has been used for realizing solid-phese crystallization of amorphous silicon films prepared by plasma-enhanced chemical vapour deposit ion. The microstructure and surface morphology of the crystallized films were investigated using x-ray diffraction and atomic Force microscopy. The results indicate that PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural quality, such as large grain size, small lattice microstrain and smooth surface morphology on low-cost glass substrates.
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Deep trap levels in a Mg-doped GaN grown by metalorganic vapor phase epitaxy are studied with deep level transient spectroscopy (DLTS). The Mg concentration of the sample was 4.8 x 10(19) cm(-3), but the hole concentration was as low as 1.3x10(17) cm-3 at room temperature. The DLTS spectrum has a dominant peak D-1 with an activation energy of 0.41+/-0.05 eV, accompanied by two additional peaks with activation energies of 0.49+/-0.09 eV (D-2) and 0.59+/-0.05 eV (D-3). It was found that the dominant peak D-1 consists of five peaks, each of which has different activation energy and capture cross section. In order to investigate these deep levels further, we performed heat treatment on the same samples to observe the variations of activation energy, capture cross section, and amplitude of DLTS signals. It was found that the longer the heat treatment duration is, the lower the amplitude of DLTS peaks become. This suggests that the decrease of the DLTS signal originates from hydrogen atom outgoing from the film during the annealing process. The possible originality of multiple trap levels was discussed in terms of the Mg-N-H complex. (C) 2000 American Vacuum Society. [S0734-2101(00)01701-2].
Resumo:
A KrF (248 nm) excimer laser with a 38 ns pulse width was used to study pulsed laser annealing (PLA) on Mg-doped cubic GaN alms. The laser-induced changes were monitored by photoluminescence (PL) measurement. It indicated that deep levels in as-grown cubic GaN : Mg films were neutralized by H and PLA treatment could break Mg-H-N complex. The evolution of emissions around 426 and 468 nm with different PLA conditions reflected the different activation of the involved deep levels. Rapid thermal annealing (RTA) in N-2 atmosphere reverts the luminescence of laser annealed samples to that of the pre-annealing state. The reason is that most H atoms still remained in the epilayers after PLA due to the short duration of the pulses and reoccupied the original locations during RTA. (C) 2000 Elsevier Science B.V. All rights reserved. PACS: 61.72.Vv; 61.72.Cc; 18.55. -m.
Resumo:
Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1 x 10(14) to 5 x 10(15) e/cm(2). The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260 degrees C for 30 min. Four electron traps, E-c - 0.24 eV, E-c - 0.41 eV, E-c - 0.51 eV, E-c - 0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Polycrystalline silicon (poly-Si) films(similar to 10 mu m) were grown from dichlorosilane by a rapid thermal chemical vapor deposition (RTCVD) technique, with a growth rate up to 100 Angstrom/s at the substrate temperature (T-s) of 1030 degrees C. The average grain size and carrier mobility of the films were found to be dependent on the substrate temperature and material. By using the poly-Si films, the first model pn(+) junction solar cell without anti-reflecting (AR) coating has been prepared on an unpolished heavily phosphorus-doped Si wafer, with an energy conversion efficiency of 4.54% (AM 1.5, 100 mW/cm(2), 1 cm(2)).
Resumo:
国家自然科学基金
Resumo:
A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.
Resumo:
Self-organized InAs quantum; dots sheets are grown on GaAs(100) substrate and tapped by 80nm GaAs layer with molecular beam epitaxy. Samples were annealed and characterized with Raman spectra, transmission electron microscopy (TEM) and photolumincscence (PL). The Raman spectra indicates arsenic clusters in the GaAs capping layer. The TEM analysis revealed the relaxation of strain in some InAs islands with the introduction of the network of 90 dislocations. In addition, the structural changes also lead to the changes of the PL spectra from me InAs islands. Their correlation was discussed, Our results suggest:est that annealing may be used to intentionally modify me properties of self-organized InAs islands on GaAs.
Resumo:
Strain relaxation in initially flat SiGe film on Si(1 0 0) during rapid thermal annealing is studied. The surface roughens after high-temperature annealing, which has been attributed to the intrinsic strain in the epilayers. It is interesting to find that high-temperature annealing also results in roughened interface, indicating the occurrence of preferential interdiffusion. It is suggested that the roughening at the surface makes the intrinsic strain in the epilayer as well as the substrate unequally distributed, causing preferential interdiffusion at the SiGe/Si interface during high-temperature annealing. (C) 1999 Elsevier Science B.V. All rights reserved.