214 resultados para cubic gallium arsenide film
Resumo:
The self-heating effect in 1.3 mu m p-doped InAs/GaAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) has been investigated using a self-consistent theoretical model. Good agreement is obtained between theoretical analysis and experimental results under pulsed operation. The results show that in p-doped QD VCSELs, the output power is significantly influenced by self-heating. About 60% of output power is limited by self-heating in a device with oxide aperture of 5x6 mu m(2). This value reduces to 55% and 48%, respectively, as the oxide aperture increases to 7x8 and 15x15 mu m(2). The temperature increase in the active region and injection efficiency of the QDs are calculated and discussed based on the different oxide aperture areas and duty cycle.
Resumo:
In this letter, we present a facet coating design to delay the excited state (ES) lasing for 1310 nm InAs/GaAs quantum dot lasers. The key point of our design is to ensure that the mirror loss of ES is larger than that of the ground state by decreasing the reflectivity of the ES. In the facet coating design, the central wavelength is at 1480 nm, and the high- and low-index materials are Ta2O5 and SiO2, respectively. Compared with the traditional Si/SiO2 facet coating with a central wavelength of 1310 nm, we have found that with the optimal design the turning temperature of the ES lasing has been delayed from 90 to 100 degrees C for the laser diodes with cavity length of 1.2 mm. Furthermore, the characteristic temperature (T-0) of the laser diodes is also improved.
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.
Resumo:
GaSb films with AlSb/GaSb compound buffer layers were grown by molecular beam epitaxy on GaAs (001) substrates. The crystal quality and optical properties were studied by high resolution transition electron microscopy and low temperature photoluminescence spectra (PL), respectively. It was found that the AlSb/GaSb compound buffer layers can restrict the dislocations into GaSb epilayers. The intensity of PL spectra of GaSb layer becomes large with the increasing the periods of AlSb/GaSb superlattices, indicating that the optical quality of GaSb films is improved.
Resumo:
The investigation of deep levels of argon-implanted LEC-grown semi-insulating GaAs with implantation dosages ranging from 1 x 10(11) to 1 x 10(15) cm-2 has been performed. Using a photoinduced transient-current spectroscopy (PITCS) it was demonstrated that, for implantation dosages below 1 X 10(13) cm-2, a negative peak or negative transient current (NTC) was observed in the temperature range from 330 to 350 K. The magnitude of this negative peak increased with dosage up to a level of 1 X 10(12) cm-2, beyond which it decreased with dosage. The dosage dependence of the EL3 peak height and the resistance of the specimen have also been investigated. It was observed that the variation of the EL3 peak height with dosage was similar to the variation of the magnitude of the negative peak, that is the EL3 peak height likewise increased with dosage up to 1 X 10(12) cm-2, and then decreased. The resistance of the original high-resistivity specimen dropped abruptly when the dosage reached 1 X 10(12) cm-2. This critical dosage (1 X 10(12) cm-2) was found to be a threshold for the generation of a highly disordered state.
Resumo:
The basic idea of a defect model of photoconversion by an oxygen impurity in semi-insulating GaAs, proposed in an earlier paper, is described in a systematic way. All experiments related to this defect, including high-resolution spectroscopic measurements, piezospectroscopic study, and recent measurements on electronic energy levels, are explained on the basis of this defect model. The predictions of the model are in good agreement with the experiments. A special negative-U mechanism in this defect is discussed in detail with an emphasis on the stability of the charge states. The theoretical basis of using a self-consistent bond-orbital model in the calculation is also given.
Resumo:
The structural properties of GaAs grown at low temperatures by molecular beam epitaxy (LTMBE GaAs) were studied. The excess arsenic atoms in LTMBE GaAs exist in the form of arsenic interstitial couples (i,e, two ns atoms share the one host site), and cause an increase in the lattice parameter of LTMBE GaAs. Annealing at above 300 degrees C, the arsenic interstitial couples decomposed, and As precipitates formed, resulting in a decrease in the lattice parameter.
Resumo:
Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.
Resumo:
After illumination with 1-1.3 eV photons during cooling-down, metastable PH modes are observed by IR absorption at 5 K in semi-insulating InP:Fe. They correlate with the photo-injection of holes, but not with a change of the charge state of the K-related centres present at equilibrium. They are explained by a change of the bonding of H, induced by hole trapping, from IR-inactive centres to PH-containing centres, stable only below 80 K. One metastable centre has well-defined geometrical parameters and the other one could be located in a region near from the interface with (Fe,P) precipitates.
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-travelling furnace under microgravity. The crystal was characterized systematically and was used in fabricating low noise field effect transistors and analogue switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single. crystal has surpassed the best. terrestrial counterparts. Studies on the correlation between SI-GaAs wafers and the electronic devices and integrated circuits indicate that the characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry.
Resumo:
A semi-insulating (SI) GaAs single crystal ingot was successfully grown in a recoverable satellite. The two-dimensional distribution of stoichiometry in space-grown SI-GaAs single crystal wafer was studied nondestructively based upon x-ray Band diffraction. The avenge stoichiometry in the space-grown crystal is 0.50007 with mean square deviation of 6 x 10(-6), and shows a better stoichiametric property than the ground-grown SI-GaAs. The average etch pit density (EPD) of dislocations in the crystal revealed by molten KOH is 2.0 x 10(4) cm(-2), and the highest EPD is 3.1 x 10(4) cm(-2). This result indicates that the structural properly of the crystal is quite good.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A semi-insulating GaAs single crystal ingot was grown in a recoverable satellite, within a specially designed pyrolytic boron nitride crucible, in a power-traveling furnace under microgravity. The characteristics of a compound semiconductor single crystal depends fundamentally on its stoichiometry, i.e. the ration of two types of atoms in the crystal. a practical technique for nondestructive and quantitative measuring stoichiometry in GaAs single crystal was used to analyze the space-grown GaAs single crystal. The distribution of stoichiometry in a GaAs wafer was measured for the first time. The electrical, optical and structural properties of the space-grown GaAs crystal were studied systematically, Device fabricating experiments prove that the quality of field effect transistors fabricated from direct ion-implantation in semi-insulating GaAs wafers has a close correlation with the crystal's stoichiometry. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The structural properties of Semi-insulating gallium arsenide (SI-GaAs) crystal grown with power-travelling technique in space have been studied by double-crystal x-ray diffractometry and chemical etching. The quality of the crystal was first evaluated by x-ray rocking-curve method. The full width at half maximum of x-ray rocking curve in space-grown SI-GaAs is 9.4+/-0.08 are seconds. The average density of dislocations revealed by molten KOH is 2.0 X 10(4) cm(-2), and the highest density is 3.1 X 10(4) cm(-2). The stoichiometry in the single crystal grown in space is improved as well. Unfortunately, the rear of the ingot grown in space is polycrystalline owing to being out of control of power. (C) 1999 COSPAR. Published by Elsevier Science Ltd.
Resumo:
Cubic GaN films were grown on GaAs(1 0 0) substrates by low-pressure metalorganic vapor-phase epitaxy at high temperature. We have found a nonlinear relation between GaN film thickness and growth timer and this nonlinearity becomes more obvious with increasing growth temperature. We assumed it was because of Ga diffusion through the GaN film, and developed a model which agrees well with the experimental results. These results raise questions concerning the role of Ga diffusion through the GaN film, which may affect the electrical and optical properties of the material. (C) 1998 Published by Elsevier Science B.V. All rights reserved.