266 resultados para Substrate Stiffness
Resumo:
Sharp and rich photoluminescence lines accociated with free exciton (FE), excitons bound to neutral acceptors (A0X) and donors (D0X) in molecular beam epitaxially (MBE) grown (211) CdTe/(211)B GaAs have been reported for the first time. The results show that the (211) CdTe/(211)B GaAs grown under optimized conditions could have as high a crystal perfection as those grown on lattice-matched substrates.
Resumo:
A simple procedure for obtaining a background-free backscattering spectrum of a light-mass film on a heavy-mass substrate by a normal incidence/grazing exit geometry has been described. Using this method such films can be aligned rapidly and accurately, and the impurity or defect information on the films can be obtained without need for realignment. Example is given from MeV Li-3+ analysis of a deposited film of Si on a single crystal substrate of yttria-stabilized, cubic zirconia.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.
Resumo:
By using the mass-analyzed low energy dual ion beam deposition technique, a high quality epitaxial, insulating cerium dioxide thin film with a thickness of about 2000 Angstrom, has been grown on a silicon (111) substrate. The component species, cerium and oxygen, are homogeneous in depth, and have the correct stoichiometry for CeO2. X-ray double-crystal diffraction shows that the full width at half maximum of the (222) and (111) peaks of the film are less than 23 and 32 s, respectively, confirming that the film is a perfect single crystal. (C) 1995 American Institute of Physics.
Resumo:
We propose a fiber-to-waveguide coupler for side-illuminated p-i-n photodiodes to obtain high responsivity and low polarization dependence that is grown on InP substrate and is suitable for surface hybrid integration in low cost modules. The fiber-to-waveguide coupler is based on a diluted waveguide,which is composed of ten periods of undoped 120nm InP/80nm InGaAsP (1.05μm bandgap) multiple layers. Using the semi-vectorial three dimensional beam propagation method (BPM) with the central difference scheme,the coupling efficiency of fiber-to-waveguide under different conditions is simulated and studied,and the optimized conditions for fiber-to-waveguide coupling are obtained. For TE-like and TM-like modes,the calculated maximum coupling efficiency is higher than 94% and 92% ,respectively. The calculated polarization dependence is less than 0. ldB,showing good polarization independence.
Resumo:
The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS. While varying geometrical parameters such as the number of turns (N),the width of the metal traces (W),the spacing between the traces (S),and the inner diameter (ID), changes in the performance of the inductors are analyzed in detail. The reasons for these changes in performance are presented. Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout. Some design rules are summarized.
Resumo:
A high performance AlAs/In0.53 Ga0.47 As/InAs resonant tunneling diode (RTD) on InP substrate is fabricated by inductively coupled plasma etching. This RTD has a peak-to-valley current ratio (PVCR) of 7. 57 and a peak current density Jp = 39.08kA/cm^2 under forward bias at room temperature. Under reverse bias, the corresponding values are 7.93 and 34.56kA/cm^2 . A resistive cutoff frequency of 18.75GHz is obtained with the effect of a parasitic probe pad and wire. The slightly asymmetrical current-voltage characteristics with a nominally symmetrical structure are also discussed.
Resumo:
The relationship between Ge content of Si1-xGex layers and growth conditions was investigated via UHV/CVD system at relative low temperature of 500℃. Si1-xGex layers were in a metastable state in this case. 10-period strained 3.0 nm- Si0.5Ge0.5/3.4 nm- Si multi quantum wells were obtained directly on Si substrate. Raman Measurement, high resolution electron microscopy and photoluminescence were used to characterize the structural and optical properties. It is found that such relative thick Si0.5Ge0.5/Si multi quantum wells are still near planar and free of dislocations, that makes it exploit applications to electrical and optical devices.
Resumo:
Three kinds of coplanar waveguides (CPWs) are designed and fabricated on different silicon substrates---common low-resistivity silicon substrate (LRS), LRS with a 3μm-thick silicon oxide interlayer, and high-resistivity silicon (HRS) substrate. The results show that the microwave loss of a CPW on LRS is too high to be used, but it can be greatly reduced by adding a thick interlayer of silicon oxide between the CPW transmission lines and the LRS.A CPW directly on HRS shows a loss lower than 2dB/cm in the range of 0-26GHz and the process is simple,so HRS is a more suitable CPW substrate.