272 resultados para P-TYPE GAN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an experimental demonstration of the interaction between the intrinsic second- and third-order optical fields in an Al0.53Ga0.47N/GaN heterostructure. The sample was deposited by metal-organic chemical vapor deposition on (0001) sapphire. The nonlinear optical coefficients of the sample, which were measured with a Mach-Zehnder interferometer system, quadratically increase with the applied modulating voltage, indicating the existence of the third-order optical field. The third-order signal was then detected by the Z-scan method and we calculated the built-in dc field on the AlGaN/GaN interface to confirm the strong interaction between the intrinsic second- and third-order optical fields. (c) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector is proposed. In comparision with conventional i-CaN/n(+)-GaN structure, an additional thin p-GaN cap layer is introduced on the i-GaN(n(-)-GaN) in the new structure. The simulation results showed that the additional layer makes the dark current to decrease in the photodetector due to the increase of the Schottky barrier height. The effects of thickness and carrier concentration of p-GaN layer on the dark current of the photodetector were also studied. It is suggested that the dark current of the new structure device could be better reduced by employing p-GaN with higher carrier concentration as the cap layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al0.3Ga0.7N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al0.3Ga0.7N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al0.3Ga0.7N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0 degrees to 60 degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the effective-mass Hamiltonian for an arbitrary direction wurtzite semiconductor on the basis of k.p theory, we investigate the strain effects on the transition energies and optical properties in the R-plane ([1012]-oriented plane) GaN. The results show that (1) the transition energies decrease with the biaxial strains changing from -0.5 to 0.5%; and (2) giant optical anisotropy appears in the R-plane which is significantly affected by the biaxial strains. We clarify the relation between the strains and the polarization properties. Finally, we discuss the application of these properties to the R-plane GaN based devices. (c) 2009 The Japan Society of Applied Physics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In GaAs-based light-emitting diode (LED) or laser diode (LD), the forward voltage (V) will decrease linearly with the increasing junction temperature (T). This can be used as a convenient method to measure the junction temperature. In GaN-based LED, the relationship is linear too. But in GaN-based LD, the acceptor M (g) in p-GaN material can not ionize completely at-room temperature, and the carrier density will change with temperature. But we find finally that, this change won't lead to a nonlinear relationship of V-T. Our experiments show that it is Linear too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electroluminescence efficiency at room temperature and low temperature (15 K) in a wide-narrow-well InGaN/GaN light-emitting diode with a narrow last well (1.5 nm) and a narrow next-to-last barrier (5 nm) is investigated to study the efficiency droop phenomenon. A reduced droop in the wide wells and a reduced droop at low temperatures reveals that inferior hole transportation ability induced Auger recombination is the root for the droop at high excitation levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of low-temperature AlN buffer layer thickness on GaN epilayer was investigated by triple-axis X-ray diffraction (XRD) and photoluminescence measurements. A method was proposed to measure the screw and edge dislocation densities by XRD. It was found that the buffer layer thickness was a key parameter to affect the quality of GaN epilayer and an appropriate thickness resulted in the best structural and optical properties except the lateral grain size. After the thickness exceeding the appropriate value, the compressive stress in the epilayer decreased as the thickness increased, which led to the redshift of the near-band edge luminescence. The experimental results showed the buffer layer thickness had more influence on edge dislocation than screw type and the former was perhaps the main source of the yellow band. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating a three-barrier, two-well resonant tunneling structure with a 1.2-mu m-thick, slightly doped n-GaAs layer, a photoinduced voltage shift on the order of magnitude of 100 mV in resonant current peaks has been verified at an irradiance of low light power density. The 1.2-mu m-thick, slightly doped n-GaAs layer manifests itself of playing an important role in enhancing photoelectric sensitivity. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doping of magnetic element Mn and Cr in GaN was achieved by thermal diffusion. The conductivity of the samples, which were all n-type, did not change significantly after the diffusion doping. X-ray diffraction measurements revealed no secondary phase in the samples. Experiments using superconducting quantum interference device (SQUID) showed that the samples were ferromagnetic at 5 and 300 K, implying the Curie temperature to be around or over 300 K, despite their n-type conductivity. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 x 10(19) cm(-3) protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 mu m, then almost kept constant to the top surface. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By integrating a resonant tunneling diode with a 1.2 mu m-thick slightly doped n-type GaAs layer in a three-barrier, two-well resonant tunneling structure, the resonant tunneling of photo-excited holes exhibits a value of peak-to-valley current ratio (PVCR) as high as 36. A vast number of photo-excited holes generated in this 1.2 mu m-thick slightly doped n-type GaAs layer, and the quantization of hole levels in a 23nm-thick quantum well on the outgoing side of hole tunneling out off the resonant tunneling diode which greatly depressed the valley current of the holes, are thought to be responsible for such greatly enhanced PVCR.