197 resultados para Vacuum cassette


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of molecular nitrogen exposure on the InP(100) surface modified by the alkali metal K overlayer is investigated by core-level photoemission spectroscopy using synchrotron radiation. The alkali metal covered surface exhibits reasonable nitrogen uptake at room temperature, and results in the formation of a P3N5 nitride complex. Flash annealing at 400 degrees C greatly enhanced the formation of this kind of nitride complex. Above 500 degrees C, the nitride complex dissolved completely. (C) 1997 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exciton states in isolated and semi-isolated quantum wires are studied. It is found that the image charges have a large effect on the effective Coulomb potential in wires. For the isolated wire the effective potential approaches the Coulomb potential in vacuum at large z distance. For the semi-isolated wire the effective potential is intermediate between the Coulomb potential in vacuum and the screened Coulomb potential at large distance. The exciton binding energy in the isolated wire is about ten times larger than that in the quantum well, and that in the semi-isolated wire is also intermediate between those in the isolated wire and in the quantum well. When the lateral width increases the binding energy decreases further, and approaches that in the quantum well. The real valence-band structure is taken into account, the exciton wave functions of the ground state in the zero-order approximation are given, and the reduced mass is calculated. The effect of the coupling between the ground and excited states are considered by the degenerate perturbation method, and it is found the coupling effect is small compared to the binding energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical, structural and reaction characteristics of In-based ohmic contacts to n-GaAs were studied. Attempts were made to form a low-band-gap interfacial phase of InGaAs to reduce the barrier height at the metal/semiconductor junction, thus yielding low-resistance, highly reliable contacts. The contacts were fabricated by e-beam sputtering Ni, NiIn and Ge targets on VPE-grown n(+)-GaAs film (approximate to 1 mu m, 2 x 10(18) cm(-3)) in ultrahigh vacuum as the structure of Ni(200 Angstrom)/NiIn(100 Angstrom)/Ge(40 Angstrom)/n(+)-GaAs/SI-GaAs, followed by rapid thermal annealing at various temperatures (500-900 degrees C). In this structure, a very thin layer of Ge was employed to play the role of heavily doping donors and diffusion limiters between In and the GaAs substrate. Indium was deposited by sputtering NiIn alloy instead of pure In in order to ensure In atoms to be distributed uniformly in the substrate; nickel was chosen to consume the excess indium and form a high-temperature alloy of Ni3In. The lowest specific contact resistivity (rho(c)) of (1.5 +/- 0.5)x 10(-6) cm(2) measured by the Transmission Line Method (TLM) was obtained after annealing at 700 degrees C for 10 s. Auger sputtering depth profile and Transmission Electron Microscopy (TEM) were used to analyze the interfacial microstructure. By correlating the interfacial microstructure to the electronical properties, InxGa1-xAs phases with a large fractional area grown epitaxially on GaAs were found to be essential for reduction of the contact resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of a potassium overlayer on nitridation and oxidation of the InP(100) surface is investigated by core-level and valence-band photoemission spectroscopy using synchrotron radiation. In comparison with the K-promoted nitridation of the InP(110) surface obtained by cleavage in situ, we found that the promotive effect for the InP(100) surface cleaned by ions bombardment is much stronger and that the nitridation products consist of two kinds of complexes: InPNx and InPNx+y. The results confirmed that surface defects play an important part in the promotive effect. Furthermore, in contrast with K-promoted oxidation of InP(100) where bonding is observed between indium and oxygen, indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100). (C) 1995 American Vacuum Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products μτ of the composite film were increased by nearly one order of magnitude from 6.96 × 10~(-7) to 5.08 × 10~(-6) cm~2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By calculating the energy distribution of electrons reaching the photocathode surface and solving the Schrodinger equation that describes the behavior of an electron tunneling through the surface potential barrier,we obtain an equation to calculate the emitted electron energy distribution of transmission-mode NEA GaAs photocathodes. Accord- ing to the equation,we study the effect of cathode surface potential barrier on the electron energy distribution and find a significant effect of the barrier-Ⅰ thickness or end height,especially the thickness,on the quantum efficiency of the cath- ode. Barrier Ⅱ has an effect on the electron energy spread, and an increase in the vacuum level will lead to a narrower electron energy spread while sacrificing a certain amount of cathode quantum efficiency. The equation is also used to fit the measured electron energy distribution curve of the transmission-mode cathode and the parameters of the surface barri- er are obtained from the fitting. The theoretical curve is in good agreement with the experimental curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of changing Be doping concentration in GaAs layer on the integrated photosensitivity for nega- tive-electron-affinity GaAs photocathodes is investigated. Two GaAs samples with the monolayer structure and the muhilayer structure are grown by molecular beam epitaxy. The former has a constant Be concentration of 1 × 10^19 cm^-3, while the latter includes four layers with Be doping concentrations of 1 × 10^19, 7 × 10^18, 4 × 10^18, and 1 × 10^18 cm^-3 from the bottom to the surface. Negative-electron-affinity GaAs photocathodes are fabricated by exciting the sample surfaces with alternating input of Cs and O in the high vacuum system. The spectral response results measured by the on-line spectral response measurement system show that the integrated photosensitivity of the photocathode with the muhilayer structure enhanced by at least 50% as compared to that of the monolayer structure. This attributes to the improvement in the crystal quality and the increase in the surface escape probability. Different stress situations are observed on GaAs samples with monolayer structure and muhilayer structure, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved photoluminescence (TRPL). The fast redshift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/tau)(beta)], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed quantum dots or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent 8 on the temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered quantum dots. Furthermore, the localized states are found to have OD density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and optical properties of GaAsSb/GaAs-based quantum wells (QWs) are investigated. The interface quality of GaAsSb/GaAs/GaAsP coupled double (CD) QW structures is improved due to the strain compensation of epitaxial layers. The CD QWs possess a W-shape of energy band structure, and the optical properties display the features characteristic of a type-IQW when the GaAsSb layer thickness is thin enough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, silicon nanocrystals embedded in SiO2 matrix were formed by conventional plasma enhanced chemical vapor deposition (PECVD) followed by high temperature annealing. The formation of silicon nanocrystals (nc-Si), their optical and micro-structural properties were studied using various experimental techniques, including Fourier transform infrared spectroscopy, micro-Raman spectra, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy. Very strong red light emission from silicon nanocrystals at room temperature (RT) was observed. It was found that there is a strong correlation between the PL intensity and the substrate temperature, the oxygen content and the annealing temperature. When the substrate temperature decreases from 250degreesC to RT, the PL intensity increases by two orders of magnitude.