303 resultados para DOUBLE-MUTANT CYCLES
Resumo:
A novel structure of spot-size converter is designed to allow low loss and large alignment tolerance between single-mode rib waveguide devices and fiber arrays theoretically. The spot-size converter consists of a tapered rib core region and a double-cladding region. Through optimizing parameters,an expanded mode field can be tightly confined in the inner cladding and thus radiation loss be reduced largely at the tapered region. The influence of refractive index and thickness of the inner cladding on coupling loss is analyzed in particular. A novel,easy method of fabricating tapered rib spot-size converter based on silicon-on-insulator material is proposed.
Resumo:
Monolithic electro-absorption modulated distributed-feedback(DFB) lasers are proposed and fabricated by using a modified double stack active layer.The 38mA threshold,9dB extinction ratio (from 0.5V to 3.0V),and about 5mW output power at the 100mA operation current are achieved.Compared with other reported results (only 1.5mW at the same operation current) of the traditional stack active structure,the proposed structure improves the output power of devices.
Resumo:
We investigate the electron transport through a double-slit-like Aharonov-Bohm (AB) ring with a quantum dot (QD) embedded in one of its arms. Considering both the resonance of the dot and interference effect, the magnitude and phase of the transmission amplitude through the QD are calculated using Green's function approach. The numerical results are in good agreement with the experimental observations.
Resumo:
于2010-11-23批量导入
Resumo:
The structural and optical properties of GaAsSb/GaAs-based quantum wells (QWs) are investigated. The interface quality of GaAsSb/GaAs/GaAsP coupled double (CD) QW structures is improved due to the strain compensation of epitaxial layers. The CD QWs possess a W-shape of energy band structure, and the optical properties display the features characteristic of a type-IQW when the GaAsSb layer thickness is thin enough.
Resumo:
We theoretically study the electron transport through a double quantum dot (QD) in the Coulomb blockade regime and reveal the phase character of the transport by embedding the double QD in a mesoscopic Aharonov-Bohm ring. It is shown that coherent transport through the double QD is preserved in spite of intradot and interdot Coulomb interactions.
Resumo:
Asymmetric dark current and photocurrent versus voltage characteristic in the Double Barrier Quantum Wells (DBQWs) photovoltaic infrared photodetector has been studied. A model based on asymmetric potential barriers was proposed. The asymmetric potential thick barrier, which due to the Si dopant segregation during growth makes a major contribution to the asymmetrical I-V characteristic, calculations based on our model agree well with experimental results. This work also confirms the potential use of this DBQWs for infrared photodetector with large responsivity and little dark current under negative bias.
Resumo:
We fabricated a bandpass filter based on Moire Bragg grating in fiber with a uniform phase mask We employed a stretch and two-exposure technique, in which the fiber was exposed to UV light from a KrF excimer through a phase mask and then the fiber is stretched and given another exposure at the same region. Due to the stretch, the periods of these two grating are slightly different, and there is a transmission between two reflection peaks at the Bragg wavelength of these two gratings.Applying different stretch can control the bandpass width of the filter. We measured the stretch characterization of a uniform Bragg grating and found the Bragg wavelength of the grating shifts linearly with the stretched length.We theoretically analyzed the grating structure and its reflection spectrum. The filter's characteristics can be optimized by choosing appropriate parameters. We will give a theoretical discussion concerning which parameters and how they affect the filter's operation.
Resumo:
The behaviors of lateral propagating modes in the aperture and the oxidized regions are investigated numerically for selectively oxidized vertical-cavity surface-emitting lasers (VCSELs). The results show that the lateral propagating modes in the oxidized region are greatly affected by the oxide layer due to its low index, the modes are divergence for the VCSELs with sufficient thick double oxide layers. So the coupling between the modes in the aperture and oxidized regions is very weak, and we can expect that the lateral spontaneous emission is greatly affected in this case. Ignoring the contribution of the lateral spontaneous emission, we calculate spontaneous emission factor by counting the total number of the guided modes in selectively oxidized VCSELs with double oxide layers. The results agree very well with the reported measurements and are inversely proportional to the lateral index step.
Resumo:
Using the multiband quantum transmitting boundary method (MQTBM), hole resonant tunneling through AlGaAs/GaMnAs junctions is investigated theoretically. Because of band-edge splitting in the DMS layer, the current for holes with different spins are tuned in resonance at different biases. The bound levels of the "light" hole in the quantum well region turned out to be dominant in the tunneling channel for both "heavy" and "light" holes. The resonant tunneling structure can be used as a spin filter for holes for adjusting the Fermi energy and the thickness of the junctions.
Resumo:
Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.
Resumo:
GaAs/AlAs/GaAlAs double barrier quantum well (DBQW) structures are employed for making the 3 similar to 5 mu m photovoltaic infrared (IR) detectors with a peak detectivity of 5x10(11) cmHz(1/2)/W at 80K. The double crystal x-ray diffraction is combined with synchrotron radiation x-ray analysis to determine the exact thickness of GaAs, AlAs and GaAlAs sublayers. The interband photovoltaic (PV) spect ra of the DBQW sample and the spectral response of the IR photocurrent of the devices are measured directly by edge excitation method, providing the information about spatial separation processes of photogenerated carriers in the multiquantum wells and the distribution of built-in field in the active region.