277 resultados para Electron localizations
Resumo:
In this paper, an n-type Si1-xGex/Ge (x >= 0.85) quantum cascade (QC) structure utilizing a deep Ge quantum well for electrons at the Gamma point is proposed. Based on linear interpolation, a conduction band offset at the Gamma point in a Si1-xGex/Ge ( x >= 0.85) heterostructure is presented, which is suitable for designing a QC laser. This approach has the advantages of a large conduction band offset at the Gamma point, a low lattice mismatch between the Si1-xGex/Ge ( x >= 0.85) active layers and the Si1-yGey ( y > x) virtual substrate, a small electron effective mass in the Gamma band, simple conduction energy band structures and a simple phonon scattering mechanism in the Ge quantum well. The theory predicts that if high-energy electrons are continuously injected into the Gamma band, a quasi-equilibrium distribution of electrons between the Gamma and L bands can be reached and held, i.e., electrons with a certain density will be kept in the Gamma band. This result is supported by the intervalley scattering experiments. In n-type Si1-xGex/Ge ( x >= 0.85) QC structures, population inversion between the laser's upper and lower levels is demonstrated.
Resumo:
Owing to a few unique advantages, the double-dot single electron transistor has been proposed as an alternative detector for charge states. In this work, we present a further study for its signal-to-noise property, based on a full analysis of the setup configuration symmetry. It is found that the effectiveness of the double-dot detector can approach that of an ideal detector, if the symmetric capacitive coupling is taken into account. The quantum measurement efficiency is also analyzed by comparing the measurement time with the measurement-induced dephasing time.
Resumo:
The electronic structures and electron g factors of InSb1-sNs and GaAs1-sNs nanowires and bulk material under the magnetic and electric fields are investigated by using the ten-band k.p model. The nitrogen doping has direct and indirect effects on the g factors. A giant g factor with absolute value larger than 900 is found in InSb1-sNs bulk material. A transverse electric field can increase the g factors, which has obviously asymmetric effects on the g factors in different directions. An electric field tunable zero g factor is found in GaAs1-sNs nanowires. (C) 2007 American Institute of Physics.
Resumo:
The electronic structure, electron g factor, and Stark effect of InAs1-xNx quantum dots are studied by using the ten-band k center dot p model. It is found that the g factor can be tuned to be zero by the shape and size of quantum dots, nitrogen (N) doping, and the electric field. The N doping has two effects on the g factor: the direct effect increases the g factor and the indirect effect decreases it. The Stark effect in quantum ellipsoids is high asymmetrical and the asymmetry factor may be 319. (c) 2007 American Institute of Physics.
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
Electron irradiation induced defects in InP material which has been formed by high temperature annealing undoped InP in different atmosphere have been studied in this paper. In addition to Fe acceptor, there is no obvious defect peak in the sample before irradiation, whereas five defect peaks with activation energies of 0.23 eV, 0.26 eV, 0.31 eV, 0.37 eV and 0.46 eV have been detected after irradiation. InP annealed in P ambient has more thermally induced defects, and the defects induced by electron irradiation have characteristics of complex defect. After irradiation, carrier concentration and mobility of the samples have suffered obvious changes. Under the same condition, electron irradiation induced defects have fast recovery behavior in the FeP2 ambient annealed InP. The nature of defects, as well as their recovery mechanism and influence on material property have been discussed from the results.
Resumo:
Photonic crystal devices with feature sizes of a few hundred nanometers are often fabricated by electron beam lithography. The proximity effect, stitching error and resist profiles have significant influence on the pattern quality, and therefore determine the optical properties of the devices. In this paper, detailed analyses and simple solutions to these problems are presented. The proximity effect is corrected by the introduction of a compensating dose. The influence of the stitching error is alleviated by replacing the original access waveguides with taper-added waveguides, and the taper parameters are also discussed to get the optimal choice. It is demonstrated experimentally that patterns exposed with different doses have almost the same edge-profiles in the resist for the same development time, and that optimized etching conditions can improve the wall angle of the holes in the substrate remarkably. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present the results of coincidence Doppler broadening (CDB) measurements and positron lifetime spectroscopy (PLS) on the semiconductor material GaSb. Gallium vacancy with positron lifetime of about 283 ps (V-Ga, (283 ps)) was identified in as-grown sample by CDB technique and PAS technique. For electron irradiated samples with dosages of 10(17) cm(-2) and 10(18) cm(-2), the PAS showed almost the same defectrelated positron lifetime of about 285 ps. CDB experiments indicated that defects in irradiated samples were related to Ga vacancies. (c) 2006 Published by Elsevier B.V.
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.
Resumo:
We study theoretically the charge-density and spin-density excitations in a two-dimensional electron gas in the presence of a perpendicular magnetic field and a Rashba type spin-orbit coupling. The dispersion and the corresponding intensity of excitations in the vicinity of cyclotron resonance frequency are calculated within the framework of random phase approximation. The dependence of excitation dispersion on various system parameters, i.e., the Rashba spin-orbit interaction strength, the electron density, the Zeeman spin splitting, and the Coulomb interaction strength is investigated.
Resumo:
This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy ( MBE) in turn on a GaAs substrate. An Al0.24Ga0.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-mu m gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.
Resumo:
The effects of dislocations and Si doping on the electrical properties of n-type GaN grown by metal organic chemical vapor deposition (MOCVD) are investigated. It is found that both electron mobility and carrier concentration are strongly influenced by edge dislocations. A moderate Si doping during the GaN growth improves the electron mobility, but the best doping effect depends on the dislocation density of the sample. High quality about 4-mu m-thick MOCVD-grown GaN film with a room temperature electron mobility as high as 1005 cm(2)/V s is obtained by optimizing growth conditions. (c) 2006 American Institute of Physics.
Resumo:
4.2 K photoluminescence (PL) and 77 K standard Hall-effect measurements were performed for In0.52Al0.48As/InxGa1-xAs metamorphic high-electron-mobility-transistor (HEMT) structures grown on GaAs substrates with different indium contents in the InxGa1-xAs well or different Si delta-doping concentrations. It was found that electron concentrations increased with increasing PL intensity ratio of the "forbidden" transition (the second electron subband to the first heavy-hole subband) to the sum of the "allowed" transition (the first electron subband to the first heavy-hole subband) and the forbidden transition. And electron mobilities decreased with increasing product of the average full width at half maximum of allowed and forbidden transitions and the electron effective mass in the InxGa1-xAs quantum well. These results show that PL measurements are a good supplemental tool to Hall-effect measurements in optimization of the HEMT layer structure. (c) 2006 American Institute of Physics.
Resumo:
An internal shrinkage of nanocavity in silicon was in situ observed under irradiation of energetic electron on electron transmission microscopy. Because there is no addition of any external materials to cavity site, a predicted nanosize effect on the shrinkage was observed. At the same time, because there is no ion cascade effect as encountered in the previous ion irradiation-induced nanocavity shrinkage experiment, the electron irradiation-induced instability of nanocavity also provides a further more convincing evidence to demonstrate the predicted irradiation-induced athermal activation effect. (c) 2006 American Institute of Physics.
Resumo:
The optical manipulation of electron spins is of great benefit to solid-state quantum information processing. In this letter, we provide a comparative study on the ultrafast optical manipulation of single electron spin in the doped and undoped quantum dots. The study indicates that the experimental breakthrough can be preliminarily made in the undoped quantum dots, because of the relatively less demand.