279 resultados para Ionic impurity defects
Resumo:
Dynamics of formation of defects in the annealed nominally undoped semi-insulating InP obtained by high pressure, high temperature annealing of high purity materials is proposed. Incorporated hydrogen passivates vacancy at indium site from annihilation forming fully hydrogenated indium vacancy which dissociates leaving large lattice relaxation behind, deep donors, mainly larger complexes involving phosphorus at indium site and isolated hydrogen defects are created in nominally undoped InP after annealing. Also created are acceptor levels such as vacancy at indium site. Carrier charge compensation mechanism in nominally undoped InP upon annealing at high temperature is given. Microscopic models of hydrogen related defects are given. Structural, electronic and vibrational properties of LVMs related to hydrogen as well as their temperature effect are discussed.
Resumo:
Dynamical formation mechanism of defects in the annealed nominally undoped semi-insulating InP obtained by high pressure, high temperature annealing of high purity materials is proposed. Local vibrational modes in tenths of InP samples reveal clearly existence of complexes related to hydrogen. Complexes of vacancy at indium site with one to four hydrogen atoms and isolated hydrogen or hydrogen dimers, complexes of hydrogen with various impurities are investigated by FTIR. Hydrogen can acts as an actuator for generation of antistructure defects. Fully hydrogenated indium vacancy dissociates leaving large lattice relaxation behind, deep donors, mainly larger complexes involving phosphorus at indium site and isolated hydrogen defects are created in nominally undoped InP after annealing. Also created are acceptor levels such as vacancy at indium site. Carrier charge compensation mechanism in nominally undoped InP upon annealing at high temperature is given. Microscopic models of hydrogen related defects are given. Structural, electronic and vibrational properties of LVMs related to hydrogen as well as their temperature effect are discussed.
Resumo:
Local vibrational modes(LVMs) in tenths of InP samples reveal clearly existence of complexes related to hydrogen. Complexes of vacancy at indium site with one to four hydrogen atom(s) and isolated hydrogen or hydrogen dimers and complexes of hydrogen with various impurities and intrinsic defects are investigated by FTIR. Especially hydrogen related complexes between various transition metals and hydrogen or hydrogen related complexes between hydrogen with point defects. New LVMs related to hydrogen will be reported in this paper. Dynamical formation mechanism of defects in the annealed nominally undoped semiinsulating InP obtained by high pressure, high temperature annealing of ultra purity materials is proposed. Hydrogen can acts as actuator for antistructure defects production. Structural, electronic and vibrational properties of LVMs related to hydrogen as well as their temperature effects are discussed.
Resumo:
Isochronal thermal-annealing behavior of NTD floating-zone silicon grown in hydrogen ambient (called NTD FZ(H) Si) is presented. The dependencies of resistivity and carrier mobility on annealing temperature are determined by room-temperature Hall electrical measurements. Using infrared absorption spectroscopy, hydrogen-related infrared absorption bands evolution for NTD FZ(H) Si were measured in detail. It is demonstrated that compared with NTD FZ(Ar) Si, NTD FZ(H) Si exhibits the striking features upon isochronal annealing in temperature range of 150 similar to 650 degreesC: there appears the formation of an excessive shallow donor at annealing temperature of 500 degreesC. It is shown that the annealing behavior is directly related to the reaction of hydrogen and irradiation-induced defects. The evolution of infrared absorption bands upon temperature reflects a series of complex reaction process: irradiation-induced defects decomposition, breaking of Si-H bonds, migration and aggregation of atomic hydrogen, and formation of the secondary defects. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
GaN epilayers grown on sapphire substrates nitridated for various lengthy periods were investigated by light scattering tomography (LST) and Raman scattering. In the LST images of the plane-view epilayers, the light scattering defects distribute in [<11(2)over bar 0>] directions. The defect density is lower in epilayer grown on substrate nitridated for a longer period. The defects are believed to be straight threading edge dislocations on {<1(1)over bar 00>} planes. The Raman shift of E-2 mode is larger in the sample grown on substrate nitridated for a longer period. Our results show that the stress is higher in the sample with fewer dislocations.