998 resultados para misfit dislocation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method to treat the interfacial misfit dislocation array following the original Peierls-Nabarro's ideas. A simple and exact analytic solution is derived in the extended Peierls-Nabarro's model, and this solution reflects the core structure and the energy of misfit dislocation, which depend on misfit and bond strength. We also find that only with beta < 0.2 the structure of interface can be represented by an array of singular Volterra dislocations, which conforms to those of atomic simulation. Interfacial energy and adhesive work can be estimated by inputting ab initio calculation data into the model, and this shows the method can provide a correlation between the ab initio calculations and elastic continuum theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Peierls-Nabarro model of the interfacial misfit dislocation array is analytically extended to a family of dislocations of greater widths. By adjusting a parameter, the width of the misfit dislocations, the distribution of the shear stress, and the restoring force law can be systematically varied. The smaller the amplitude of the restoring force, the wider the misfit dislocations and the lower the interfacial energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-x Ga1-xN/GaN multiple quantum well (MQW) samples with strain-layer thickness lager/less than the critical one are investigated by temperature-dependent photoluminescence and transmission electron microscopy, and double crystal x-ray diffraction. For the sample with the strained-layer thickness greater than the critical thickness, we observe a high density of threading dislocations generated at the MQW layers and extended to the cap layer. These dislocations result from relaxation of the strain layer when its thickness is beyond the critical thickness. For the sample with the strained-layer thickness greater than the critical thickness, temperature-dependent photoluminescence measurements give evidence that dislocations generated from the MQW layers due to strain relaxation are main reason of the poor photoluminescence property, and the dominating status change of the main peak with increasing temperature is attributed to the change of the radiative recombination from the areas including dislocations to the ones excluding dislocations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The core structure of a dislocation complex in SiGe/Si system composed of a perfect 60degrees dislocation and an extended 60 dislocation has been revealed at atomic level. This is attained by applying the image deconvolution technique in combination with dynamical diffraction effect correction to an image taken with a 200 kV field-emission high-resolution electron microscope. The possible configuration of the dislocation complex is analyzed and their Burgers vectors are determined. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As/InP heterostructure that misfit dislocation lines deviate from the [110] directions at a certain angle depending on the indium content x. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on the misfit dislocations in the interface between the III-V ternary compounds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It was observed with transmission electron microscopy in the In0.52Al0.48As/InxGa1-xAs/In0.52Al0.48As system grown on the (001) InP substrate that misfit dislocation lines deviate [110] directions at an angle with its value depending on the gallium content. Such an abnormal alignment of misfit dislocations is explained in terms of an alloy effect on the formation of single jogs on misfit dislocations in the interface between the III-V ternary compounds. (C) 1998 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of GaAs cap layer with different thicknesses in the GaAs/In0.3Ga0.7As/GaAs heterostructure on misfit dislocation is investigated with transmission electron microscopy, and it is found that lines of misfit dislocation break up and move out of the structure when the GaAs cap layer thickness exceeds a certain amount. The breaking up and moving out of misfit dislocations, initially confined in the (001) substrate/InGaAs epilayer interface, occur mainly along the [110] direction on the interface in the structure. (C) 1995 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

探索和建立不同尺度理论之间的关联模式是科学研究的重要课题,本文基于跨尺度模型着重探讨了金属陶瓷界面的凝聚能和原子结构问题。本文遵循原始Peierls-Nabarro模型的基本思想,提出了一种处理一维界面失配位错组的新方法。在这个推广的Peierls-Nabarro模型中,本文得到了一个简单而且准确的解析解,此解反映了失配位错的核结构、能量与失配度、剪切模量之间的依赖关系。当界面剪切模量较强而失配度较小时,界面的结构可以用一组奇导师Volterra位错来描述,这与一些原子模拟结果一致。采用这一简单的模型,引入第一原理计算得到的数据,此模型可以估算金属陶瓷界面的凝聚能。一维界面失配位错组的Peierls-Nabarro模型还被解析推广描述一大类较宽的位错。在模型中我们引进了一个参数a,通过控制参数a,我们可以系统地改变失配位错芯的宽度、剪切应力的分布和弹性恢复力。随着a增加,位错宽度增加,同时弹性恢复力和失配位错应力的幅度减少。当界面剪切模量强和失配度小时,失配位错的宽度近似线性反比于弹性恢复力的幅度大小。同时当界面剪切模量和失配度固定时,失配能、弹性能和总的界面能随a的增加而减少。界面能和恢复力律形式密切相关,当界面剪切模量弱和失配度大时,这种依赖关系更强。考虑到界面常常是在晶格两个方向都有失配,本文还引进了描述界面周期失配位错的二维广义Peierls-Nabarro模型,使得我们能够定量地研究界面的结构和能量。文中定量分析了广义堆垛能γ面对界面失配位错的结构和能量的影响,分析了位错网中两种位错组的相互作用。当界面剪切模量τ_0变大和失配度f变小时,随着位错核区占整个界面的比重下降,γ面的形状对界面能量和结构影响减弱,结果两种位错组之间的相互作用也减弱。此外γ面的变化还有可能导致位错网结构的转变,也就是导致界面结构的转变。应用此模型,本文还研究了金属-陶瓷Ag/MgO(100)界面,给出了界面的能量和原子结构。文中得出结论:在Ag/MgO(100)界面将会形成{1/2<110>; <110>}类型的位错网。此外由于界面失配位错的形成,Ag/MgO(100)界面凝聚能的理论值900mJ/m~2将减少214mJ/m~2,最终成为686mJ/m~2。基于第一原理赝势平面波的总能计算,文中给出了金属陶瓷Al/MgO(100)界面弛豫和未弛豫时的广义堆垛能面。然后结合第三章发展的广义二维Peierls-Nabarro模型,详细研究了金属陶瓷Al/MgO(100)界面的原子结构和界面能。文中得出的“在Al/MgO(100)界面将会形成{1/2<110>; <110>}类型位错网”的推论,证实了Vellinga等的猜测;文中还预测了凝聚能的理论是在600mJ/m~2(未弛豫情形)和670mJ/m~2(弛豫情形)之间。这个应用表明此方法能够容易地建立连续介质理论和第一原理计算之间的联系,实现理论上的跨尺度。本文最后提出了一种得到界面原子有效对势的反演方法。通过反演金属-MgO陶瓷界面的第一原理计算的凝聚能曲线,我们得到了一些金属原子和陶瓷离子之间的对势,此对势反映了金属陶瓷键合的特性。本文的反演方法提供了通过第一原理计算数据来拟合界面原子对势的一种可行性途径。这种方法可归结为第一类尺度关联理论,即单向的跨尺度关联模式。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Defects and morphologies are presented in this paper as revealed with transmission electron microscope (TEM) in the In(0.8)G(0.2)As/InAlAs heterostructure on InP(001) for high-electron-mobility transistors application. Most of the misfit dislocation lines are 60 degrees type and they deviate < 110 > at some angles to either side according to their Burges vectors. The misfit dislocation lines deviating [-110] are divided into two types according to whether their edge component b(eg) of Burges vectors in [001] pointing up or down. If b(eg) points up in the growth direction, there is the local periodical strain modulation along the dislocation line. In addition, the periodical modulation in height along [-110] on the In(0.8)G(0.2)As surface is observed, this surface morphology is not associated with the relaxation of mismatch strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of strain and structural properties of thick epitaxial InGaN layers grown on GaN with different thicknesses are investigated. It is found that, with increase in InGaN thickness, plastic relaxation via misfit dislocation generation becomes a more important strain relaxation mechanism. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and induces an apparent red-shift of the cathodoluminescence peak of the InGaN layer. On the other hand, the plastic relaxation process results in a high defect density, which degrades the structural and optical properties of InGaN layers. A transition layer region with both strain and In composition gradients is found to exist in the 450-nm-thick InGaN layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power of advanced transmission electron microscopy in determining the nanostructures and chemistry of nanosized materials on the applications in semiconductor quantum structures was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure's efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than 1.6x10(6) cm(-2), can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.