193 resultados para attractors
Resumo:
The ungluing of a strange attractor, gluing of strange attractors, and the coexistence of strange attractors, not reported earlier in the study of the Lorenz system, are discovered numerically.
Resumo:
The system of coupled oscillators and its time-discretization (with constant stepsize h) are considered in this paper. Under some conditions, it is showed that the discrete systems have one-dimensional global attractors l(h) converging to l which is the global attractor of continuous system.
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Resumo:
Host-parasitoid models including integrated pest management (IPM) interventions with impulsive effects at both fixed and unfixed times were analyzed with regard to host-eradication, host-parasitoid persistence and host-outbreak solutions. The host-eradication periodic solution with fixed moments is globally stable if the host's intrinsic growth rate is less than the summation of the mean host-killing rate and the mean parasitization rate during the impulsive period. Solutions for all three categories can coexist, with switch-like transitions among their attractors showing that varying dosages and frequencies of insecticide applications and the numbers of parasitoids released are crucial. Periodic solutions also exist for models with unfixed moments for which the maximum amplitude of the host is less than the economic threshold. The dosages and frequencies of IPM interventions for these solutions are much reduced in comparison with the pest-eradication periodic solution. Our results, which are robust to inclusion of stochastic effects and with a wide range of parameter values, confirm that IPM is more effective than any single control tactic.
Resumo:
We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.
Resumo:
The theory of deterministic chaos is used to study the three rings A, B, and C of Saturn and the French and Cassini divisions in between them. The data set comprises Voyager photopolarimeter measurements. The existence of spatially distributed strange attractors is shown, implying that the system is open, dissipative, nonequilibrium, and non-Markovian in character.
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.
Resumo:
We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.
Resumo:
In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u(t) - div(p(x)del u) + lambda u =f(u) in a bounded smooth domain ohm subset of R `` with Dirichlet boundary conditions when the diffusion coefficient p becomes large in a subregion ohm(0) which is interior to the physical domain ohm. We prove, under suitable assumptions, that the family of attractors behave upper and lower semicontinuously as the diffusion blows up in ohm(0). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.
Resumo:
We study attractor mechanism in extremal black holes of Einstein-Born-Infeld theories in four dimensions. We look for solutions which are regular near the horizon and show that they exist and enjoy the attractor behavior. The attractor point is determined by extremization of the effective potential at the horizon. This analysis includes the backreaction and supports the validity of non-supersymmetric attractors in the presence of higher derivative interactions in the gauge field part. (C) 2008 Elsevier B.V. All rights reserved.