Continuity of attractors for parabolic problems with localized large diffusion


Autoria(s): CARBONE, Vera Lucia; CARVALHO, Alexandre N.; SCHIABEL-SILVA, Karina
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2008

Resumo

In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u(t) - div(p(x)del u) + lambda u =f(u) in a bounded smooth domain ohm subset of R `` with Dirichlet boundary conditions when the diffusion coefficient p becomes large in a subregion ohm(0) which is interior to the physical domain ohm. We prove, under suitable assumptions, that the family of attractors behave upper and lower semicontinuously as the diffusion blows up in ohm(0). (c) 2006 Elsevier Ltd. All rights reserved.

Identificador

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, v.68, n.3, p.515-535, 2008

0362-546X

http://producao.usp.br/handle/BDPI/28873

10.1016/j.na.2006.11.017

http://dx.doi.org/10.1016/j.na.2006.11.017

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

Relação

Nonlinear Analysis-theory Methods & Applications

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #attractors #localized large diffusion #parabolic problems #upper and lower semicontinuity #NONLINEAR BOUNDARY-CONDITIONS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion