Lower semicontinuity of attractors for non-autonomous dynamical systems
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions. CNPq[305447/2005-0] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CAPES BEX[1353/06-3] FAPESP, Brazil[03/10042-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Royal Society University Research Fellow Royal Society University Research Fellow |
Identificador |
ERGODIC THEORY AND DYNAMICAL SYSTEMS, v.29, p.1765-1780, 2009 0143-3857 http://producao.usp.br/handle/BDPI/28832 10.1017/S0143385708000850 |
Idioma(s) |
eng |
Publicador |
CAMBRIDGE UNIV PRESS |
Relação |
Ergodic Theory and Dynamical Systems |
Direitos |
restrictedAccess Copyright CAMBRIDGE UNIV PRESS |
Palavras-Chave | #REACTION-DIFFUSION EQUATIONS #DIFFERENTIAL-EQUATIONS #NONHYPERBOLIC ATTRACTOR #ASYMPTOTIC-BEHAVIOR #PARABOLIC PROBLEMS #PERTURBATIONS #CONTINUITY #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |