Finite-dimensional global attractors in Banach spaces
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[302022/2008-2] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[451761/2008-1] CAPES/DGU[267/2008] DGU Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) FAPESP, Brazil[2008/53094] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP, Brazil[2008/55516-3] Ministerio de Ciencia e Innovacion[MTM2008-0088] Ministerio de Ciencia e Innovacion Junta de Andalucia[P07-FQM-02468] Junta de Andalucia (Spain) Junta de Andalucia[FQM314] Junta de Andalucia (Spain) EPSRC EPSRC[EP/G007470/1] |
Identificador |
JOURNAL OF DIFFERENTIAL EQUATIONS, v.249, n.12, p.3099-3109, 2010 0022-0396 http://producao.usp.br/handle/BDPI/28810 10.1016/j.jde.2010.09.032 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Differential Equations |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Global attractors #Negatively invariant sets #Box-counting dimension #Banach-Mazur distance #EMBEDDINGS #SETS #Mathematics |
Tipo |
article original article publishedVersion |