Dynamics in dumbbell domains III. Continuity of attractors
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved. MEC MEC[PHB2006-003-PC] MEC[MTM2006-08262] MEC Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid, Spain[CCG07-UCM/ESP-2393] Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid, Spain Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid, Spain[920894] Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid, Spain SIMUMAT-Comunidad de Madrid, Spain SIMUMAT-Comunidad de Madrid, Spain Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq[305447/2005-0] CNPq[451761/2008-1] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) DGU Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CAPES/DGU[267/2008] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[2008/53094-4] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[06/04781-3] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) FAPESP[07100981-0] |
Identificador |
JOURNAL OF DIFFERENTIAL EQUATIONS, v.247, n.1, p.225-259, 2009 0022-0396 http://producao.usp.br/handle/BDPI/28845 10.1016/j.jde.2008.12.014 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Differential Equations |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #PARABOLIC PROBLEMS #THIN DOMAINS #EQUATIONS #Mathematics |
Tipo |
article original article publishedVersion |