CONTINUITY OF GLOBAL ATTRACTORS FOR A CLASS OF NON LOCAL EVOLUTION EQUATIONS


Autoria(s): PEREIRA, Antonio Luiz; SILVA, Severino Horacio da
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.

CNPq-Brazil[2003/11021-7]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq-Brazil[03/10042-0]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq-Brazil[141882/2003-4]

Identificador

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.26, n.3, p.1073-1100, 2010

1078-0947

http://producao.usp.br/handle/BDPI/30733

10.3934/dcds.2010.26.1073

http://dx.doi.org/10.3934/dcds.2010.26.1073

Idioma(s)

eng

Publicador

AMER INST MATHEMATICAL SCIENCES

Relação

Discrete and Continuous Dynamical Systems

Direitos

restrictedAccess

Copyright AMER INST MATHEMATICAL SCIENCES

Palavras-Chave #Global attractor #Normal hyperbolicity #Continuity of attractors #DOMAIN #CONVERGENCE #EQUILIBRIA #SYSTEMS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion