CONTINUITY OF GLOBAL ATTRACTORS FOR A CLASS OF NON LOCAL EVOLUTION EQUATIONS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria. CNPq-Brazil[2003/11021-7] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq-Brazil[03/10042-0] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CNPq-Brazil[141882/2003-4] |
Identificador |
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.26, n.3, p.1073-1100, 2010 1078-0947 http://producao.usp.br/handle/BDPI/30733 10.3934/dcds.2010.26.1073 |
Idioma(s) |
eng |
Publicador |
AMER INST MATHEMATICAL SCIENCES |
Relação |
Discrete and Continuous Dynamical Systems |
Direitos |
restrictedAccess Copyright AMER INST MATHEMATICAL SCIENCES |
Palavras-Chave | #Global attractor #Normal hyperbolicity #Continuity of attractors #DOMAIN #CONVERGENCE #EQUILIBRIA #SYSTEMS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |