977 resultados para X ray photoemission spectroscopy
Resumo:
We study the electronic structure of Sr2RuO4, a noncuprate layered superconductor (T-c=0.93 K), using electron spectroscopy. X-ray photoemission spectroscopy shows that the single particle occupied density of states (DOS) is in fair agreement with the calculated DOS. However, resonant photoemission spectroscopy across the Ru 4p-4d threshold establishes the existence of a correlation satellite to the Ru 4d band. The results indicate substantial charge-transfer character at the Fermi level, with on-site correlations U-dd comparable in magnitude to the Ru-O hopping integral, like the cuprates.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the w-InN/h-BN heterojunction. We find that it is a type-II heterojunction with the VBO being -0.30 +/- A 0.09 eV and the corresponding conduction band offset (CBO) being 4.99 +/- A 0.09 eV. The accurate determination of VBO and CBO is important for designing the w-InN/h-BN-based electronic devices.
Resumo:
This work was supported by the 863 High Technology R&D Program of China (Grant Nos. 2007AA03Z402 and 2007AA03Z451), the Special Funds for Major State Basic Research Project (973 program) of China (Grant No. 2006CB604907), and the National Science Foundation of China (Grant Nos. 60506002 and 60776015). The authors express their appreciation to Dr. Tieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The band offsets in InN/p-Si heterojunctions are determined by high resolution x-ray photoemission spectroscopy. The valence band of InN is found to be 1.39 eV below that of Si. Given the bandgap of 0.7 eV for InN, a type-III heterojunction with a conduction band offset of 1.81 eV was found. Agreement between the simulated and experimental data obtained from the heterojunction spectra was found to be excellent, establishing that the method of determination was accurate. The charge neutrality level (CNL) model provided a reasonable description of the band alignment of the InN/p-Si interface and a change in the interface dipole by 0.06 eV was observed for InN/p-Si interface.
Resumo:
In0.2Ga0.8N layers were directly grown on Si(111) substrate by plasma-assisted molecular beam epitaxy (PAMBE). Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using the standard Vegard's law. High-resolution X-ray photoemission spectroscopy measurements were used to determine the band offset of wurtzite-In0.2Ga0.8N/Si(111) heterojunctions. The valence band of InGaN is found to be 2.08 +/- 0.04 eV below that of Si. The conduction band offset (CBO) of InGaN/Si heterojunction is found similar to 0.74 eV and a type-II heterojunction. (C) 2012 The Japan Society of Applied Physics
Resumo:
Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.
Resumo:
In2O3 is a promising partner of InN to form InN/In2O3 heterosystems. The valence band offset (VBO) of wurtzite InN/cubic In2O3 heterojunction is determined by x-ray photoemission spectroscopy. The valence band of In2O3 is found to be 1.47 +/- 0.11 eV below that of InN, and a type-I heterojunction with a conduction band offset (CBO) of 0.49-0.99 eV is found. The accurate determination of the VBO and CBO is important for use of InN/In2O3 based electronic devices.
Resumo:
The nature of defects in polycrystalline Bi4-xLaxTi3O12 (BLT) thin films with x=0.00, 0.25, 0.50, and 0.75 was evaluated by x-ray photoemission spectroscopy measurements. The influence of oxygen vacancies and substitution of Bi for La atoms were discussed. In the BLT thin films, it was found that the oxygen ions at the metal-oxygen octahedral were much more stable than those at the [Bi2O2] layers. on the other hand, for Bi4Ti3O12 (BIT) thin film, oxygen vacancies could be induced both at the titanium-oxygen octahedral and at the [Bi2O2] layers. The oxygen-vacancy defect pairs determined in BIT and Bi3.75La0.25Ti3O12 (BLT025) can pin the polarization of surrounding lattices leading to fatigue of capacitors. Meanwhile, the concentration of similar defect pairs is relatively low in heavily doped BIT films and then good fatigue resistance is observed.
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
X-ray Photoelectron Spectroscopy (XPS) plays a central role in the investigation of electronic properties as well as compositional analysis of almost every conceivable material. However, a very short inelastic mean free path (IMFP) and the limited photon flux in standard laboratory conditions render this technique very much surface sensitive. Thus, the electronic structure buried below several layers of a heterogeneous sample is not accessible with usual photoemission techniques. An obvious way to overcome this limitation is to use a considerably higher energy photon source, as this increases the IMFP of the photo-ejected electron, thereby making the technique more depth and bulk sensitive. Due to this obvious advantage, Hard X-ray Photo Electron Spectroscopy (HAXPES) is rapidly becoming an extremely powerful tool for chemical, elemental, compositional and electronic characterization of bulk systems, more so with reference to systems characterized by the presence of buried interfaces and other types of chemical heterogeneity. The relevance of such an investigative tool becomes evident when we specifically note the ever-increasing importance of heterostructures and interfaces in the context of a wide range of device applications, spanning electronic, magnetic, optical and energy applications. The interest in this nondestructive, element specific HAXPES technique has grown rapidly in the past few years; we discuss critically its extensive use in the study of depth resolved electronic properties of nanocrystals, multilayer superlattices and buried interfaces, revealing their internal structures. We specifically present a comparative discussion, with examples, on two most commonly used methods to determine internal structures of heterostructured systems using XPS. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The valence band offset (VBO) of the InN/GaAs heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.94 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.66 +/- 0.23 eV, and a type-II band alignment forms at the InN/GaAs heterojunction. (C) 2008 American Institute of Physics.
Resumo:
The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.
Resumo:
Pt ions-CeO2 interaction in Ce1-xPtxO2-delta (x=0.02) has been studied for the first time by electrochemical method combined with x-ray diffraction and x-ray photoelectron spectroscopy. Working electrodes made of CeO2 and Ce0.98Pt0.02O2-delta mixed with 30% carbon are treated electrochemically between 0.0-1.2 V in potentiostatic (chronoamperometry) and potentiodynamic (cyclic voltametry) mode with reference to saturated calomel electrode. Reversible oxidation of Pt-0 to Pt2+ and Pt4+ state due to the applied positive potential is coupled to simultaneous reversible reduction of Ce4+ to Ce3+ state. CeO2 reduces to CeO2-y (y=0.35) after applying 1.2 V, which is not reversible; Ce0.98Pt0.02O2-delta reaches a steady state with Pt2+:Pt4+ in the ratio of 0.60:0.40 and Ce4+:Ce3+ in the ratio of 0.55:0.45 giving a composition Ce0.98Pt0.02O1.74 at 1.2 V, which is reversible. Composition of Pt ion substituted compound is reversible between Ce0.98Pt0.02O1.95 to Ce0.98Pt0.02O1.74 within the potential range of 0.0-1.2 V. Thus, Ce0.98Pt0.02O2-delta forms a stable electrode for oxidation of H2O to O-2 unlike CeO2. A linear relation between oxidation of Pt2+ to Pt4+ with simultaneous reduction in Ce4+ to Ce3+ is observed demonstrating Pt-CeO2 metal support interaction is due to reversible Pt-0/Pt2+/Pt4+ interaction with Ce4+/Ce3+ redox couple.
Resumo:
The chemical shifts in the X-ray K-absorption edge of strontium in various compounds and in six minerals are measured using a single crystal X-ray spectrometer. Besides valence, the shifts are found to be governed by ionic charges on the absorbing ions, which are calculated employing Pauling's method. For the minerals the plot of chemical shift against the theoretically calculated ionic charges is used to determine the charges on the strontium ions.